跟李沐学AI-深度学习课程00-03【预告、课程安排、深度学习介绍、安装】
目录
00 预告
01 课程安排
02 深度学习介绍
03 安装
本地安装
04 数据操作+数据预处理
数据操作
数据类型
创建数组
访问元素
数据操作实现
入门
运算符
广播机制
索引和切片
节省内存
转换为其他Python对象
数据预处理实现
读取数据集
处理缺失值
转换为张量格式
小结
00 预告
《动手学深度学习》
https://github.com/d2l-ai/d2l-zh
01 课程安排

02 深度学习介绍

03 安装
本地安装
· 使用conda/miniconda环境
conda env remove d2l-zh
conda create -n -y d2l-zh python=3.8 pip
conda activate d2l-zh
· 安装需要的包
pip install -y jupyter d2l torch torchvision
pip install jupyter d2l torch torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple使用上面这个命令行可以极大程度的提高下载速度
· 下载代码并执行
wget https://zh-v2.d2l.ai/d2l-zh.zip
unzip d2l-zh.zip
jupyter notebook
DIVE INTO DEEP LEARNING
https://zh.d2l.ai/chapter_installation/index.html
04 数据操作+数据预处理
数据操作
数据类型


0一个标量
1一个特征向量
2一个样本-特征矩阵
3RGB图片(widthxheightxchannel)
4RGB图片批量(batch x width x height x channel)
5视频批量(batch x time x width x height x channel)
创建数组
形状、数据类型、元素的值
访问元素

数据操作实现
入门
import torchx = torch.arange(12) xx.shapex.numel()X = x.reshape(3, 4) Xtorch.zeros((2, 3, 4))torch.ones((2, 3, 4))torch.randn(3, 4)torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
运算符
x = torch.tensor([1.0, 2, 4, 8]) y = torch.tensor([2, 2, 2, 2]) x + y, x - y, x * y, x / y, x ** y # **运算符是求幂运算torch.exp(x)X = torch.arange(12, dtype=torch.float32).reshape((3,4)) Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)X == YX.sum()
广播机制
a = torch.arange(3).reshape((3, 1)) b = torch.arange(2).reshape((1, 2)) a, b
索引和切片
X[-1], X[1:3]X[1, 2] = 9 XX[0:2, :] = 12 X
节省内存
before = id(Y) Y = Y + X id(Y) == before
转换为其他Python对象
A = X.numpy() B = torch.tensor(A) type(A), type(B)a = torch.tensor([3.5]) a, a.item(), float(a), int(a)
数据预处理实现
读取数据集
import osos.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA,Pave,127500\n') # 每行表示一个数据样本f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')# 如果没有安装pandas,只需取消对以下行的注释来安装pandas
# !pip install pandas
import pandas as pddata = pd.read_csv(data_file)
print(data)
处理缺失值
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
转换为张量格式
from mxnet import npX, y = np.array(inputs.to_numpy(dtype=float)), np.array(outputs.to_numpy(dtype=float)) X, y
小结
-
pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。 -
用
pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。
相关文章:
跟李沐学AI-深度学习课程00-03【预告、课程安排、深度学习介绍、安装】
目录 00 预告 01 课程安排 02 深度学习介绍 03 安装 本地安装 04 数据操作数据预处理 数据操作 数据类型 创建数组 访问元素 数据操作实现 入门 运算符 广播机制 索引和切片 节省内存 转换为其他Python对象 数据预处理实现 读取数据集 处理缺失值 转换为张…...
C++ this 指针 面试
this 指针 this 指针是一个隐含于每一个非静态成员函数中的特殊指针。它指向调用该成员函数的那个对象。 当对一个对象调用成员函数时,编译程序先将对象的地址赋给 this 指针,然后调用成员函数,每次成员函数存取数据成员时,都隐…...
虚拟机上安装docker,并安装flink镜像
1. 安装docker 官网步骤:https://docs.docker.com/engine/install/centos/ sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo yum install docker-ce docker-ce-cli containerd.…...
【计算机网络】P1 计算机网络概述
P1 计算机网络概述 概念组成角度1:组成部分角度2:工作方式角度3:功能组成 功能分类按分布范围分按使用者分按交换技术按拓扑结构分按传输技术分 标准化工作及相关组织标准化工作相关组织 概念 三网融合 通过 计算机网络,将 电信网…...
003 OpenCV filter2D
目录 一、环境 二、图像卷积 三、代码演示 3.1、锐化 3.2、sobel边缘,x方向 3.3、sobel边缘,y方向 3.4、高斯模糊 3.5、完整代码 一、环境 本文使用环境为: Windows10Python 3.9.17opencv-python 4.8.0.74 二、图像卷积 在OpenCV…...
轻松玩转华为MateX5分屏功能,乐趣层出不穷!
✅小窗交互,沉浸体验不打断; ✅分区截屏,花式截图,一招搞定; ✅跨屏拖拽,随心分享易如反掌; ✅悬停视频会议,沟通效率大不同。...
springboot引入redisson分布式锁及原理
1.引入依赖 <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.13.6</version> </dependency>2.配置类创建bean /*** author qujingye* Classname RedissonConfig* Description TOD…...
Linux驱动开发 问题随笔
1、内核空间与用户空间数据交换方式 分两种情况: 1> 需要交换的数据量较大时; 2> 需要交换的数据量较小时; 第一种情况使用以下的函数: unsigned long copy_to_user(void __user* to, const void* from, unsigned long n)…...
三分/01分数规划
三分 最小球覆盖 2018南京D 三分套三分套三分 constexpr int N105; struct node{int x,y,z; }a[N]; int n; double road(double x1,double y1,double z1,double x2,double y2,double z2){return sqrt((x1-x2)*(x1-x2)(y1-y2)*(y1-y2)(z1-z2)*(z1-z2)); } double check(double…...
大批卖家产品被下架!Temu又有新动作?
大批卖家产品被下架!Temu又有新动作? 近日,Temu正式上线韩国站,截止目前已上线27个国家地区。Temu海外市场发展迅猛,外界的声音也褒贬不一。这其中最有发言权的,应该就是Temu平台的卖家了! …...
STM32 LL库 TIM3定时器多通道捕获输入采集
为什么不用HAL库,使用HAL库捕获输入一个通道还尚可,多通道捕获由于HAL的回调函数不符合我的要求,干脆直接切换到LL库。网上找了许多,代码处理写的不符合我的要求,这里记录一下我的调试过程。 TIM2输出1路PWM信号&#…...
如何为初创企业选择合适的 ERP 系统?
**ERP系统**是制造、分销、供应链、金融、会计、风险管理等多个行业必不可少的企业技术解决方案。不论垂直行业、企业规模或目标受众如何,将ERP作为企业管理战略的核心部分都非常重要。 对于渴望发展的小型企业和初创企业来说,更是如此。大型企业需要对…...
jssip contact的随机字符串的问题
let configuration {sockets: [socket],uri: sip:1001127.0.0.1,}; 如果这样注册freesswitch,那么fs注册信息中的Contact字段信息就是:sip:sdfsdfsdfsfcvdwvdwd.invalid;transportws;fs_natyes;fs_path... 正确的写法是: //URI是jssip内置…...
别再吐槽大学教材了,来看看这些网友强推的数学神作!
前言 关于大学数学教材的吐槽似乎从来没停止过。有人慨叹:数学教材晦涩难懂。错!难懂,起码还可以读懂。数学教材你根本读不懂;也有人说:数学教材简直就是天书。 数学教材有好有坏,这话不假,但更…...
Elasticsearch-汇总
Elasticsearch-基础介绍 跳转 分布式全文搜索引擎:包含【实时搜索】和【分析引擎】 Elasticsearch-倒排索引 跳转 倒排索引 跳转 Elasticsearch-Term Dictionary和Term Index 跳转 lucene-基础介绍 跳转 Elasticsearch-联合索引 跳转 Elasticsearch-Roaring B…...
9.3 【MySQL】系统表空间
了解完了独立表空间的基本结构,系统表空间的结构也就好理解多了,系统表空间的结构和独立表空间基本类似,只不过由于整个MySQL进程只有一个系统表空间,在系统表空间中会额外记录一些有关整个系统信息的页面,所以会比独立…...
STM32CUBEIDE生成hex文件 Release版本的下载不启动
现象描述: 使用STM32CUBEIDE生成hex文件,使用脱机下载器或者J-Flash下载到单片机中(STM32F407)单片机不启动。 测试其他的程序是可以启动的。 修改办法: 把Release版本切换到debug版本,重新编写…...
2023年亚太杯数学建模思路 - 复盘:校园消费行为分析
文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…...
ceph集群移除物理节点
1. 概述 ceph分布式存储在生产或者实验环境,经常涉及到物理节点加入或者删除,本文仅对移除物理节点的相关步骤做了操作记录,以方便需要时查阅。 2. 移除物理节点 2.1 out掉相应osd 操作之前通过ceph -s确保整个集群状态是OK的,…...
(八)Spring源码解析:Spring MVC
一、Servlet及上下文的初始化 1.1> DispatcherServlet的初始化 对于Spring MVC来说,最核心的一个类就是DispatcherServlet,它负责请求的行为流转。那么在Servlet的初始化阶段,会调用init()方法进行初始化操作,在DispatcherSe…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
