当前位置: 首页 > news >正文

视频链接怎么制作/湖南关键词优化品牌价格

视频链接怎么制作,湖南关键词优化品牌价格,网页制作淘宝网站建设,网站右边跳出的广告怎么做目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1. 活体人脸识别检测算法概述 4.2. 深度学习在活体人脸识别检测中的应用 4.3. 算法流程 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 …

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1. 活体人脸识别检测算法概述

4.2. 深度学习在活体人脸识别检测中的应用

4.3. 算法流程

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

..........................................................................% 使用训练好的模型进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Training_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);
accuracy
lab1 = [];
for i = 1:length(Dataset.Labels)if Dataset.Labels(i) == '图片或者视频人脸'lab1 = [lab1,1];endif Dataset.Labels(i) == '真人人脸'lab1 = [lab1,2];end
endlab2 = [];
for i = 1:length(Predicted_Label)if Predicted_Label(i) == '图片或者视频人脸'lab2 = [lab2,1];endif Predicted_Label(i) == '真人人脸'lab2 = [lab2,2];end
endfigure;
plot(lab1,'b-s',...'LineWidth',1,...'MarkerSize',8,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(lab2,'r-->',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
title(['识别率',num2str(100*accuracy),'%']);
legend('真实种类','识别种类');
title('1:图片或者视频人脸, 2:真人人脸');% 随机选择16张测试图像进行展示
index = randperm(numel(Resized_Training_Dataset.Files), 20);figure
for i = 1:20% 在子图中展示每张图像、预测标签和概率subplot(5,4,i)I = readimage(Dataset, index(i));% 读取图像imshow(I) % 显示图像label = Predicted_Label(index(i));% 预测标签title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end
83

4.算法理论概述

        基于深度学习的活体人脸识别检测算法是近年来计算机视觉和人工智能领域的研究热点。该算法结合了深度学习技术和人脸识别技术,旨在通过分析和识别面部特征来确定个体的真实身份,并区分真实人脸和伪造人脸。

       活体检测是一些身份验证场景确定对象真实生理特征的方法,在人脸识别应用中,活体检测能基于人脸图片中可能存在的畸变、摩尔纹、反光、倒影、边框等信息的静默活体检测,或通过眨眼、张嘴、摇头、点头等组合动作,使用人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人操作。可有效抵御照片、视频、换脸、面具、遮挡、3D动画以及屏幕翻拍等常见的攻击手段,从而帮助用户甄别欺诈行为,保障用户的利益。

4.1. 活体人脸识别检测算法概述

       活体人脸识别检测算法是一种用于验证个体身份的技术,它通过分析人脸的生物特征来确认个体的真实身份。与传统的身份验证方法(如密码、卡片等)相比,活体人脸识别检测算法具有更高的安全性和便捷性。它可以在不需要接触任何硬件设备的情况下进行身份验证,因此被广泛应用于金融、安全等领域。

4.2. 深度学习在活体人脸识别检测中的应用

        深度学习是一种基于神经网络的机器学习方法,它可以从大量的数据中学习并提取出复杂的特征表示。在活体人脸识别检测中,深度学习技术被用于构建强大的特征提取器,以捕捉人脸的细微特征。

        具体而言,基于深度学习的活体人脸识别检测算法通常采用卷积神经网络(CNN)作为基本模型。CNN由多个卷积层、池化层和全连接层组成,可以有效地提取图像中的局部和全局特征。通过训练大量的活体人脸图像和伪造人脸图像,CNN可以学习到区分真实人脸和伪造人脸的判别性特征。

4.3. 算法流程

基于深度学习的活体人脸识别检测算法通常包括以下流程:

(1) 数据预处理:对输入的人脸图像进行预处理,包括人脸检测、对齐、归一化等操作,以保证输入数据的一致性和稳定性。

(2) 特征提取:利用训练好的Googlenet模型对预处理后的人脸图像进行特征提取。Googlenet模型可以通过前向传播计算得到每个卷积层的特征图,这些特征图描述了图像的不同层次的抽象特征。

(3) 活体检测:在特征提取的基础上,构建一个分类器(如支持向量机、softmax分类器等)对提取的特征进行分类,以判断输入的人脸图像是否为活体人脸。分类器通常通过训练大量的真实人脸和伪造人脸样本来学习分类决策边界。

(4) 决策融合:对于多模态活体人脸识别检测,可以将多个分类器的决策结果进行融合,以提高算法的鲁棒性和准确性。常见的决策融合方法包括投票法、加权融合法等。

       未来,随着深度学习技术的不断发展,活体人脸识别检测算法将进一步提高准确性和鲁棒性。一方面,可以通过引入更复杂的神经网络结构(如残差网络、注意力机制等)来增强特征提取能力;另一方面,可以利用生成对抗网络(GAN)等生成模型来生成高质量的伪造人脸样本,以提高算法的泛化能力。同时,结合多模态生物特征识别(如虹膜、指纹等)也是未来发展的重要方向,可以进一步提高身份验证的安全性和可靠性。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于深度学习的活体人脸识别检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1. 活体人脸识别检测算法概述 4.2. 深度学习在活体人脸识别检测中的应用 4.3. 算法流程 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 …...

Angular 由一个bug说起之二:trackBy的一点注意事项

trackBy是angualr优化项目性能的一种方法, 通过返回一个具有绑定性的唯一值, 比如id,手机号,身份证号之类的,来让angular能够跟踪数组的项目,根据数据的变化来重新生成DOM, 这样就节约了性能。 但是如果是使用ngFor循环组件&…...

单片机FLASH下载算法的制作

环境 硬件使用正点原子STM32F407探索者V2开发板 编程环境使用MDK 下载工具使用JLINK FLASH芯片使用W25Q128 什么是下载算法 单片机FLASH的下载算法是一个FLM文件,FLM通过编译链接得到,其内部包含一系列对FLASH的操作,包括初始化、擦除、写…...

[nlp] 损失缩放(Loss Scaling)loss sacle

在深度学习中,由于浮点数的精度限制,当模型参数非常大时,会出现数值溢出的问题,这可能会导致模型训练不稳定。为了解决这个问题,损失缩放(Loss Scaling)技术被引入,它通过缩放损失值来解决这个问题。 在深度学习中,损失缩放技术通常是通过将梯度进行缩放来实现的。具…...

Django框架之视图层

【一】三板斧 【1】HttpResponse 返回字符串类型 【2】render 返回html页面,并且在返回给浏览器之前还可以给html页面传值 【3】redirect 重定向页面 在视图文件中写视图函数的时候不能没有返回值了,默认返回的是None,页面上就会报错 d…...

商城免费搭建之java商城 java电子商务Spring Cloud+Spring Boot+mybatis+MQ+VR全景+b2b2c

1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前端框架…...

AI机器学习实战 | 使用 Python 和 scikit-learn 库进行情感分析

专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https:/…...

CANoe-Logging模块如何抓取总线数据

在CANoe测量期间(CANoe运行时),总线数据经由Measurement Setup界面的各分析模块的输入口流入Trace、Graphics、Data等窗口中,或统计、或显示、或分析。总线数据除了能流入分析窗口中做解析外,还可以保存到log文件中,留作其他人分析或复现的文件。 在Measurement Setup界…...

Unity中Shader的矩阵加减法

文章目录 前言一、什么是矩阵矩阵就是一组数的阵列 二、矩阵的加法三、矩阵的负值四、矩阵的减法五、矩阵的表示 前言 Unity中Shader用到的矩阵加减法,以及矩阵的一些基础常识 一、什么是矩阵 矩阵就是一组数的阵列 1 2 3 4 5 6 二、矩阵的加法 两个矩阵相加就是…...

IIC总线概述和通信时序代码详细图文解析

IIC总线 1 IIC总线概述 I2C总线两线制包括:串行数据SDA(Serial Data)、串行时钟SCL(Serial Clock)。总线必须由主机(通常为微控制器)控制,主机产生串行时钟(SCL&#x…...

EtherCAT 伺服控制功能块实现

EtherCAT 是运动控制领域主要的通信协议,开源EtherCAT 主站协议栈 IgH 和SOEM 两个项目,IgH 相对更普及一些,但是它是基于Linux 内核的方式,比SOEM更复杂一些。使用IgH 协议栈编写一个应用程序,控制EtherCAT 伺服电机驱…...

如何基于OpenCV和Sklearn算法库开展机器学习算法研究

大家在做机器学习或深度学习研究过程中,不可避免都会涉及到对各种算法的研究使用,目前比较有名的机器学习算法库主要有OpenCV和Scikit-learn(简称Sklearn),二者都支持各种机器学习算法,主要有监督学习、无监…...

在 Node.js 中发出 HTTP 请求的 5 种方法

在 Node.js 中发出 HTTP 请求的 5 种方法 学习如何在 Node.js 中发出 HTTP 请求可能会让人感到不知所措,因为有数十个可用的库,每个解决方案都声称比上一个更高效。一些库提供跨平台支持,而另一些库则关注捆绑包大小或开发人员体验。 在这篇…...

pipeline agent分布式构建

开启 agent rootjenkins:~/learning-jenkins-cicd/07-jenkins-agents# docker-compose -f docker-compose-inbound-agent.yml up -d Jenkins配置添加 pipeline { agent { label docker-jnlp-agent }parameters {booleanParam(name:pushImage, defaultValue: true, descript…...

MySQL(17):触发器

概述 MySQL从 5.0.2 版本开始支持触发器。MySQL的触发器和存储过程一样,都是嵌入到MySQL服务器的一段程序。 触发器是由 事件来触发 某个操作,这些事件包括 INSERT 、 UPDATE 、 DELETE 事件。 所谓事件就是指用户的动作或者触发某项行为。 如果定义了触…...

挖掘PostgreSQL事务的“中间态”----更加严谨的数据一致性?

1.问题 今天在上班途中,中心的妹纸突然找我,非常温柔的找我帮忙看个数据库的报错。当然以我的性格,妹子找我的事情对我来说优先级肯定是最高的,所以立马放下手中的“小事”,转身向妹子走去。具体是一个什么样的问题呢…...

多种方法实现conda环境迁移

Conda 为包管理器和虚拟环境管理器。在配置完项目环境,进行了编写和测试代码,需要大量数据测试运行时,需要将其移至另一台主机上。Conda 提供了多种保存和移动环境的方法。 方法1: scp拷贝法,直接将envs的环境文件夹…...

C++ string类(一)

1.C语言中的字符串 C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符 OOP(Object Oriented Programming)的思想,而且…...

系统时间和JVM的Date时间不一致问题解决

通过Java得到的时间与操作系统时间不一致,如何修改Java虚拟机时间? 造成这种问题的原因可能是:你的操作系统时区跟你JVM的时区不一致。 你的操作系统应该是中国的时区吧,而JVM的时区不一定是中国时区,你在应用服务器…...

23111701[含文档+PPT+源码等]计算机毕业设计javaweb点餐系统全套餐饮就餐订餐餐厅

文章目录 **项目功能简介:****点餐系统分为前台和后台****前台功能介绍:****后台功能介绍:** **论文截图:****实现:****代码片段:** 编程技术交流、源码分享、模板分享、网课教程 🐧裙:77687156…...

RabbitMQ 部署及配置详解(集群部署)

单机部署请移步: RabbitMQ 部署及配置详解 (单机) RabbitMQ 集群是一个或 多个节点,每个节点共享用户、虚拟主机、 队列、交换、绑定、运行时参数和其他分布式状态。 一、RabbitMQ 集群可以通过多种方式形成: 通过在配置文件中列出群集节点以…...

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蝠鲼觅食优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…...

「分享学习」SpringCloudAlibaba高并发仿斗鱼直播平台实战完结

[分享学习]SpringCloudAlibaba高并发仿斗鱼直播平台实战完结 第一段:简介 Spring Cloud Alibaba是基于Spring Cloud和阿里巴巴开源技术的微效劳框架,普遍应用于大范围高并发的互联网应用系统。本文将引见如何运用Spring Cloud Alibaba构建一个高并发的仿…...

Vue|props配置

props是Vue中用于传递数据的属性。通过在子组件的选项中定义props属性,可以指定子组件可以接收的数据以及其他配置选项。父组件可以通过在子组件上使用特定的属性来传递数据。 目录 目录 App.vue 什么是App.vue 组件引用 props配置 组件复用 案例1&#xff1a…...

使用Microsoft Dynamics AX 2012 - 2. 入门:导航和常规选项

Microsoft Dynamics AX的核心原则之一是为习惯于Microsoft软件的用户提供熟悉的外观和感觉。然而,业务软件必须适应业务流程,这可能相当复杂。 用户界面和常见任务 在我们开始进行业务流程和案例研究之前,我们想了解一下本章中的常见功能。…...

【代码随想录】算法训练计划21、22

day 21 1、530. 二叉搜索树的最小绝对差 题目: 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 思路: 利用了二叉搜索树的中序遍历特性用了双指…...

java实现钉钉机器人消息推送

项目开发中需要用到钉钉机器人发送任务状态,本来想单独做一个功能就好,但是想着公司用到钉钉机器人发送项目挺多的。所以把这个钉钉机器人抽离成一个组件发布到企业maven仓库,这样可以给其他同事用提高工作效率。 1.目录结构 2.用抽象类&…...

C语言之break continue详解

C语言之break continue 文章目录 C语言之break continue1. break 和 continue2. while语句中的break和continue2.1break和continue举例 3. for语句中的break和continue3.1break和continue举例 1. break 和 continue 循环中break和continue 在循环语句中,如果我达到…...

mysql group by 执行原理及千万级别count 查询优化

大家好,我是蓝胖子,前段时间mysql经常碰到慢查询报警,我们线上的慢sql阈值是1s,出现报警的表数据有 7000多万,经常出现报警的是一个group by的count查询,于是便开始着手优化这块,遂有此篇,记录下…...

Linux的几个常用基本指令

目录 1. ls 指令2.pwd命令3.cd 指令4. touch指令5.mkdir指令6.rmdir指令 && rm 指令7.man指令8.cp指令9.mv指令10.cat指令 1. ls 指令 语法: ls [选项][目录或文件] 功能:对于目录,该命令列出该目录下的所有子目录与文件。对于文件&…...