当前位置: 首页 > news >正文

wordpress仿站函数/seo干什么

wordpress仿站函数,seo干什么,工信部备案网站打不开,导购网站 icp备案要求文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov5算法5 数据集6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非…

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
  • 4 Yolov5算法
  • 5 数据集
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习YOLO图像视频足球和人体检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

得益于深度学习技术的飞速发展,基于深度学习的目标检测算法研究成为近几年研究的热门方向。
本项目基于Yolov5算法实现图像视频足球和人检测。

2 实现效果

在这里插入图片描述
在这里插入图片描述

3 卷积神经网络

卷积神经网络(CNN)是一种包含卷积运算的深层前馈神经网络。传统的神经网络每个神经元权重连接上层的所有神经元,所以会出现大量权重值,增加整个网络的数据量和复杂程度。CNN则具有两个重要特征则是“局部感知”和“权值共享”,可有效提取数据的特征同时降低权值数量。完整的卷积网络通常包括卷积层、池化层、全连接层和输出层。
卷积神经网络的运行流程就是在卷积层进行特征提取,池化层进行进一步特征概括,最终通过全连接层进行分类的过程,流程见下图。根据数据的特征不同,卷积网络需要构建不同深度的网络结构,越复杂的数据越需要丰富的网络堆叠方式来提取数据的多层特征。

在这里插入图片描述

卷积层的提取数据特征的作用方式是通过卷积运算,使相同的卷积核根据固定的步长遍历数据。卷积核每遍历一个位置就和前一层中的神经元执行卷积运算,它是将矩阵中相同位置的元素直接相乘,然后求和的过程。在一维卷积神经网络中按照这个运算逻辑将卷积核矩阵根据步幅值继续向右滑动,直到覆盖整个输入矩阵,如图。

在这里插入图片描述

最后,得到卷积后的特征矩阵。在卷积层,输入由一组卷积核卷积得到新的特征映射经过激活函数处理传递至下一层。

池化层实现的功能则是对输入数据的降维和抽象,通过在空间范围内做维度约减,使模型可以抽取更广范围的特征,同时减少计算量和参数个数。池化采样主要分为两种方法:平均池化采样和最大池化采样。本文采用的是最大池化。池化过程如图。

https://img-blog.csdnimg.cn/228a5a0c5fbe4b56b54f06d5f66bb531.jpeg

最终卷积层和池化层提取的所有特征,在全连接层中以非线性地拟合输入数据用于分类。

4 Yolov5算法

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
相关代码

class Yolo(object):def __init__(self, weights_file, verbose=True):self.verbose = verbose# detection paramsself.S = 7  # cell sizeself.B = 2  # boxes_per_cellself.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle","bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant","sheep", "sofa", "train","tvmonitor"]self.C = len(self.classes) # number of classes# offset for box center (top left point of each cell)self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),[self.B, self.S, self.S]), [1, 2, 0])self.y_offset = np.transpose(self.x_offset, [1, 0, 2])self.threshold = 0.2  # confidence scores threholdself.iou_threshold = 0.4#  the maximum number of boxes to be selected by non max suppressionself.max_output_size = 10self.sess = tf.Session()self._build_net()self._build_detector()self._load_weights(weights_file)

5 数据集

数据集包含4000多张标注过的球员与足球
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

深度学习YOLO图像视频足球和人体检测 - python opencv 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov5算法5 数据集6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非…...

系列七、JVM的内存结构【堆(Heap)】

一、概述 一个JVM实例只存在一个堆内存,堆内存的大小是可以手动调节的。类加载器读取了类文件后,需要把类、方法、常变量放到堆内存中,保存所有引用类型的真实信息,以方便执行器执行,堆内存分为三个部分,即…...

什么是Selenium?如何使用Selenium进行自动化测试?

什么是 Selenium? Selenium 是一种开源工具,用于在 Web 浏览器上执行自动化测试(使用任何 Web 浏览器进行 Web 应用程序测试)。   等等,先别激动,让我再次重申一下,Selenium 仅可以测试Web应用…...

【蓝桥杯 第十五届模拟赛 Java B组】训练题(A - I)

目录 A、求全是字母的最小十六进制数 B、Excel表格组合 C、求满足条件的日期 D、 取数字 - 二分 (1)暴力 (2)二分 E、最大连通块 - bfs F、哪一天? G、信号覆盖 - bfs (1)bfs&#xf…...

【数据结构】手撕双向链表

目录 前言 1. 双向链表 带头双向循环链表的结构 2. 链表的实现 2.1 初始化 2.2 尾插 2.3 尾删 2.4 头插 2.5 头删 2.6 在pos位置之前插入 2.7 删除pos位置 3.双向链表完整源码 List.h List.c 前言 在上一期中我们介绍了单链表,也做了一些练习题&…...

性能测试 —— Jmeter接口处理不低于200次/秒-场景

需求:期望某个接口系统的处理能力不低于200次/秒,如何设计? ①这个场景是看服务器对某个接口的TPS值是否能大于等于200,就可以了; ②系统处理能力:说的就是我们性能测试中的TPS; ③只要设计一…...

Qt中使用QNetworkAccessManager类发送https请求时状态码返回0

前言 在项目开发中,碰到一个问题,使用QNetworkAccessManager类对象发送https请求时,状态码一直返回0,抓包分析看请求响应也是正常的。费了好大劲终于搞定了,主要是两个原因导致的。 原因一:未设置支持SSL…...

Linux - 物理内存管理 - memmap

说明 裁减内核预留内存占用,在启动log中,发现memmap占用了大块内存(446个pages)。 On node 0 totalpages: 32576 memblock_alloc_try_nid: 1835008 bytes align0x40 nid0 from0x0000000000000000 max_addr0x0000000000000000 al…...

Python爬虫动态ip代理防止被封的方法

目录 前言 一、什么是动态IP代理? 二、如何获取代理IP? 1. 付费代理IP 2. 免费代理IP 3. 自建代理IP池 三、如何使用代理IP爬取数据? 1. 使用requests库设置代理IP 2. 使用urllib库设置代理IP 3. 使用selenium库设置代理IP 四、常…...

01Urllib

1.什么是互联网爬虫? 如果我们把互联网比作一张大的蜘蛛网,那一台计算机上的数据便是蜘蛛网上的一个猎物,而爬虫程序就是一只小蜘蛛,沿着蜘蛛网抓取自己想要的数据 解释1:通过一个程序,根据Url(http://www.…...

python爬取酷我音乐 根据歌名进行爬取

# _*_ coding:utf-8 _*_ # 开发工具:PyCharm # 公众号:小宇教程import urllib.parse from urllib.request import urlopen import json import time import sys import osdef Time_1...

【深度学习】吴恩达课程笔记(五)——超参数调试、batch norm、Softmax 回归

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 【吴恩达课程笔记专栏】 【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础 【深度学习】吴恩达课程笔记(二)——浅层神经网络、深层神经网络 【深度学习】吴恩达课程笔记(三)——参数VS超参数、深度…...

腾讯云轻量级服务器和云服务器什么区别?轻量服务器是干什么用的

随着互联网的迅速发展,服务器成为了许多人必备的工具。然而,面对众多的服务器选择,我们常常会陷入纠结之中。在这篇文章中,我们将探讨轻量服务器和标准云服务器的区别,帮助您选择最适合自己需求的服务器。 腾讯云双十…...

解决:虚拟机远程连接失败

问题 使用FinalShell远程连接虚拟机的时候连接不上 发现 虚拟机用的VMware,Linux发行版是CentOs 7,发现在虚拟机中使用ping www.baidu.com是成功的,但是使用FinalShell远程连接不上虚拟机,本地网络也ping不通虚拟机&#xff0c…...

SpringBoot项目集成发邮件功能

1&#xff1a;引入依赖2&#xff1a;配置设置3&#xff1a;授权码获取&#xff1a;4&#xff1a;核心代码5&#xff1a;postman模拟验证6&#xff1a;安全注意 1&#xff1a;引入依赖 <dependency><groupId>org.apache.commons</groupId><artifactId>c…...

【Spring篇】使用注解进行开发

&#x1f38a;专栏【Spring】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 &#x1f970;欢迎并且感谢大家指出小吉的问题 文章目录 &#x1f33a;原代码&#xff08;无注解&#xff09;&#x1f384;加上注解⭐两个注…...

Flink(六)【DataFrame 转换算子(下)】

前言 今天学习剩下的转换算子&#xff1a;分区、分流、合流。 每天出来自学是一件孤独又充实的事情&#xff0c;希望多年以后回望自己的大学生活&#xff0c;不会因为自己的懒惰与懈怠而悔恨。 回答之所以起到了作用&#xff0c;原因是他们自己很努力。 …...

【2023春李宏毅机器学习】生成式学习的两种策略

文章目录 1 各个击破2 一步到位3 两种策略的对比 生成式学习的两种策略&#xff1a;各个击破、一步到位 对于文本生成&#xff1a;把每一个生成的元素称为token&#xff0c;中文当中token指的是字&#xff0c;英文中的token指的是word piece。比如对于unbreakable&#xff0c;他…...

Android13 adb 无法连接?

Android13 adb 无法连接? 文章目录 Android13 adb 无法连接?一、前言二、替换adbGoogle 官网对adb的介绍&#xff1a;Google 提供的adb tools的下载&#xff1a; 三、总结1、adb connect 连接后显示offline2、输入adb devices 报错&#xff1a;版本不匹配导致3、adb常用命令4…...

Ubuntu 20.04 调整交换分区大小

Ubuntu 调整交换分区大小 一、系统情况二、去除旧的交换分区文件三、配置并启用交换分区四、查看swap文件大小 一、系统情况 Ubuntu &#xff1a;Ubuntu 20.04.6 LTS 交换分区位置&#xff1a; cat /proc/swaps二、去除旧的交换分区文件 去掉旧的交换分区有两个步骤&#x…...

将Agent技术的灵活性引入RPA,清华等发布自动化智能体ProAgent

近日&#xff0c;来自清华大学的研究人员联合面壁智能、中国人民大学、MIT、CMU 等机构共同发布了新一代流程自动化范式 “智能体流程自动化” Agentic Process Automation&#xff08;APA&#xff09;&#xff0c;结合大模型智能体帮助人类进行工作流构建&#xff0c;并让智能…...

高济健康:数字化科技创新与新零售碰撞 助推医疗产业优化升级

近日&#xff0c;第六届中国国际进口博览会在上海圆满落幕&#xff0c;首次亮相的高济健康作为一家专注大健康领域的疾病和健康管理公司&#xff0c;在本届进博会上向业内外展示了围绕“15分钟步行健康生活圈”构建进行的全域数字化升级成果。高济健康通过数字化科技创新与新零…...

SystemVerilog学习 (5)——接口

一、概述 验证一个设计需要经过几个步骤&#xff1a; 生成输入激励捕获输出响应决定对错和衡量进度 但是&#xff0c;我们首先需要一个合适的测试平台&#xff0c;并将它连接到设计上。 测试平台包裹着设计,发送激励并且捕获设计的输出。测试平台组成了设计周围的“真实世界”,…...

vue3插槽的使用

什么是插槽 Vue 3 插槽&#xff08;Slots&#xff09;是一个强大的工具&#xff0c;用于在组件之间传递内容和逻辑。通过使用插槽&#xff0c;我们可以将子组件中的内容插入到父组件中的特定位置。本篇文章将总结 Vue 3 插槽的基本用法、特点以及使用场景。 基本用法 插槽分为…...

IPTABLES问题:DNAT下如何解决内网访问内部服务器问题

这个问题&#xff0c;困扰了我几年了&#xff0c;今天终于得到解决。 问题是这样的&#xff0c;在局域网内部有一台服务器&#xff0c;通过IPTABLES的网关提供对外服务&#xff0c;做过IPTABLES网关的人都知道&#xff0c;这很容易做到&#xff0c;只要在网关机器上写一个DNAT…...

异步任务线程池——最优雅的方式创建异步任务

对于刚刚从校园出来的菜鸡选手很容易写出自以为没问题的屎山代码&#xff0c;可是当上线后就会立即暴露出问题&#xff0c;这说到底还是基础不够扎实&#xff01;只会背八股文&#xff0c;却不理解&#xff0c;面试头头是道&#xff0c;一旦落地就啥也不是。此处&#xff0c;抛…...

uniapp 跨页面传值及跨页面方法调用

uniapp 跨页面传值及跨页面方法调用 1、跨页面传值 使用全局方法监听uni.$emit、uni.$on、uni.$off 发布、监听、移除 methods: {addFun(){let data [1]uni.navigateBack({ // 返回上一页delta: 1})uni.$emit(successFun,{data}) // 传值} }监听页 onLoad() {uni.$on(succ…...

无线物理层安全大作业

这个标题很帅 Beamforming Optimization for Physical Layer Security in MISO Wireless NetworksProblem Stateme![在这里插入图片描述](https://img-blog.csdnimg.cn/58ebb0df787c4e23b0c7be4189ebc322.png) Beamforming Optimization for Physical Layer Security in MISO W…...

目标检测标注工具AutoDistill

引言 在快速发展的机器学习领域&#xff0c;有一个方面一直保持不变&#xff1a;繁琐和耗时的数据标注任务。无论是用于图像分类、目标检测还是语义分割&#xff0c;长期以来人工标记的数据集一直是监督学习的基础。 然而&#xff0c;由于一个创新性的工具 AutoDistill&#x…...

关于SPJ表的数据库作业

打字不易&#xff0c;且复制且珍惜 建表 use 库名;create table S( --供应商 SNO char(6) not null, SNAME char(10) not null, STATUS INT, CITY char(10), primary key(SNO));create table P( --零件 PNO char(6) not null, PNAME char(12)not null, COLOR char(4), WEIGHT…...