论文阅读 | Video Frame Synthesis using Deep Voxel Flow
前言: 视频帧生成方法(视频插帧/视频预测)ICCV2017 oral
Video Frame Synthesis using Deep Voxel Flow
引言
当下进行视频帧合成的方法分为两种,第一种是光流法,光流准确的话效果好,光流不准确的话则生成伪影
另一种就是CNN通过卷积合成该像素位置的RGB值,这种方法没有光流好效果好,容易糊,
我们结合这两种方法的优势,用光流法,直接将附近位置的值复制过来,比从无到有的合成RGB要简单得多,同时又用了一个强大的端到端的CNN网络进行学习
我们的方法中间生成了一个 voxel flow layer,是一种3D的时空光流向量,我们的方法还不需要光流值作为监督
方法

这个图还是比较简单直接的,作者主要是定义了什么是voxel Flow F
The output of H is a 3D voxel flow field F on a 2D grid of integer target pixel locations:

即是一盒在2D网格上的整数像素位置上的3D流量(这里的3D可以看成3个通道,分别记录三个维度上的相对位置)
由于我们假设流是线性的,因此对于中间帧插帧来说,两边向中间的流即是对称的,因此
the absolute coordinates of the corresponding locations in the earlier and later frames as L0 = (x - ∆x, y - ∆y) and L1 = (x + ∆x, y + ∆y), respectively.
利用了中间帧光流后对齐得到的第一帧L0和后一帧L1图像
于是,利用 voxel flow和L0L1 ,可以通过三线性插值得到像素位置转移后的图像(即光流warp操作)
三线性插值具体数学推导如下:
3个维度对应8个整数位置(这是因为求得的光流F(x,y)和∆t是小数,落在两个整数之间,由于时间在0-1之间,因此时间维,即第三维的整数非0即1)
注意,这个括号一个是往上取整和往下取整

因此,在这8个不同位置上的值,乘上一个权重W

具体的权重如下:

比如:对于000这个位置的x维,则是(1-【某个0-1之间的小数】),y维同样,t维为1-∆t
以此类推…
这个对应于网络里则是光流warp和mask相乘
代码如下(前面的Encoder Decoder网络省略)
flow = x[:, 0:2, :, :]mask = x[:, 2:3, :, :]grid_x, grid_y = meshgrid(input_size[0], input_size[1])with torch.cuda.device(input.get_device()):grid_x = torch.autograd.Variable(grid_x.repeat([input.size()[0], 1, 1])).cuda()grid_y = torch.autograd.Variable(grid_y.repeat([input.size()[0], 1, 1])).cuda()flow = 0.5 * flowif self.syn_type == 'inter':coor_x_1 = grid_x - flow[:, 0, :, :]coor_y_1 = grid_y - flow[:, 1, :, :]coor_x_2 = grid_x + flow[:, 0, :, :]coor_y_2 = grid_y + flow[:, 1, :, :]elif self.syn_type == 'extra':coor_x_1 = grid_x - flow[:, 0, :, :] * 2coor_y_1 = grid_y - flow[:, 1, :, :] * 2coor_x_2 = grid_x - flow[:, 0, :, :]coor_y_2 = grid_y - flow[:, 1, :, :]else:raise ValueError('Unknown syn_type ' + self.syn_type)output_1 = torch.nn.functional.grid_sample(input[:, 0:3, :, :],torch.stack([coor_x_1, coor_y_1], dim=3),padding_mode='border')output_2 = torch.nn.functional.grid_sample(input[:, 3:6, :, :],torch.stack([coor_x_2, coor_y_2], dim=3),padding_mode='border')mask = 0.5 * (1.0 + mask) #过的是tanhmask = mask.repeat([1, 3, 1, 1])x = mask * output_1 + (1.0 - mask) * output_2return x
同时作者还介绍了多尺度学习,在不同尺度上学一个voxel Flow,在上采样将不同尺度融合,这样可以处理大的运动

实验

比较早期的工作,几乎没有什么方法可以对比

总结
这篇文章比superslomo还要早,里面的双向光流和Mask思想至今也还在沿用,mutil-scale的方式也用在了image enhancemen领域
相关文章:
论文阅读 | Video Frame Synthesis using Deep Voxel Flow
前言: 视频帧生成方法(视频插帧/视频预测)ICCV2017 oral Video Frame Synthesis using Deep Voxel Flow 引言 当下进行视频帧合成的方法分为两种,第一种是光流法,光流准确的话效果好,光流不准确的话则生…...
我所理解的生活
诞生 人真正意义上的诞生应该是社会学意义上的,是一种意识到自我、自我与社会关系的存在,只有这种诞生,才是完整人生的基点,大千世界中,唯有人类以生活作为自己的存在方式,除人类以外,从无机界…...
debian 部署nginx https
我是flask 处理请求单进程, 差点意思 , 考虑先flask 在往下走 一:安装nginx 因为我是debian 系统,所以我的建议是直接 sudo apt-get install nginx 你也可以选择在官网下载, 但是我搭建ssl 的时候安装openssl非常的麻…...
SQL 层功能改进 - lookupJoin 的优化
一、传统 join 算法lookupJoin 是 join 查询的一种,传统 join 算法为:1. 遍历 A 表,读取一条数据 r2. 遍历 B 表,对于每条数据,与 r 进行 join 操作3. 重复 1、2 操作,直到 A 表遍历完所有数据二、lookupJo…...
动态规划:鸣人的影分身
在火影忍者的世界里,令敌人捉摸不透是非常关键的。我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。影分身是由鸣人身体的查克拉能量制造的,使用的查克拉越多,制造出的影分身越强。针对不同的作战情况…...
如何为三星active2手表安装自己DIY的表盘
一、步骤介绍 Step 1. 下载Galaxy watch studio; Step 2. 按照up主“隔壁张师傅2022”的文章进行安装。 二、安装流程简单说明: ① 电脑端官网下载并安装Galaxy Watch Designer或者Galaxy Watch Studio程序。 ② 关闭手表蓝牙连接,并打开调…...
Android 项目必备(四十二)-->Android 多窗口模式
简介 自由窗口模式: 该模式类似于常见的桌面操作系统, 应用界面的窗口可以自由的拖动和修改大小。 分屏模式 该模式可以在手机上使用, 该模式将屏幕一分为二, 同时显示两个应用界面。 画中画模式: 该模式主要用于TV, 在该模式下…...
OpenHarmony的未来和如何做好一个开源社区
今天要分享的文章,可能更多只是作为一种观点。主要包括2个内容。OpenHarmony的未来和如何做好一个开源社区,好的,接下来开始今天的内容。 你对OpenHarmony的未来如何看待? OpenHarmony的未来看起来非常光明,因为它具…...
二叉搜索树实现
树的导览 树由节点(nodes)和边(edges)构成,如下图所示。整棵树有一个最上端节点,称为根节点(root)。每个节点可以拥有具有方向的边(directed edges)…...
解决Spring Data Jpa 实体类自动创建数据库表失败问题
先说一下我遇到的这个问题,首先我是通过maven创建了一个spring boot的工程,引入了Spring data jpa,结果实体类创建好之后,运行工程却没有在数据库中自动创建数据表。 找了半天发现是一个配置的问题! hibernate.ddl-auto节点的配…...
Elasticsearch:创建一个简单的 “你的意思是?” 推荐搜索
“你的意思是” 是搜索引擎中一个非常重要的功能,因为它们通过显示建议的术语来帮助用户,以便他可以进行更准确的搜索。比如,在百度中,我们进行搜索时,它通常会显示一些更为常用推荐的搜索选项来供我们选择:…...
urllib之ProxyHandler代理以及CookieJar的cookie内存传递和本地保存与读取的使用详解
处理更高级操作时(Cookies处理,代理设置),需要一个强大的工具Handler,可以理解成各种处理器,有处理登录认证的、有处理Cookies的、有处理代理设置的。利用这些几乎可以做到HTTP请求中所有事情。当中urllib.request模块里的 BaseHa…...
华为造车锚定智选模式, 起点赢家赛力斯驶入新能源主航道
文|螳螂观察 作者| 易不二 近日,赛力斯与华为的一纸联合业务深化合作协议,给了频频猜测赛力斯与华为之间关系的舆论一个明确的定调:智选模式已成为华为与赛力斯共同推动中国新能源汽车产业高质量发展的坚定选择。 自华为智能汽车业务开启零…...
[oeasy]python0096_游戏娱乐行业_雅达利_米洛华_四人赛马_影视结合游戏
游戏娱乐行业 回忆上次内容 游戏机行业从无到有 雅达利 公司 一枝独秀并且带领 行业 发展起来 雅达利公司 优秀员工 乔布斯 在 朋友 帮助下完成了《pong》 Jobs 黑了 Woz 一部分收入 然后拿着钱 去印度禅修了 游戏行业 会如何继续 呢??🤔 灵修 乔布…...
使用python测试框架完成自动化测试并生成报告-实例练习
练习一: 使用unittest 完成自动化测试并使用HttpTestRunner生成报告 1、写个简单的计算器功能,大小写转换功能,随机生成字符串功能 2、编写测试用例,不同的数据(你能想到的所有测试用例),并进行断言。除0的…...
JavaWeb 实战 01 - 计算机是如何工作的
计算机是如何工作的1. 计算机发展史2. 计算机的基本组成2.1 冯诺依曼体系结构2.2 CPU的内部结构2.3 指令2.3.1 指令表2.3.1.1 寄存器2.3.2 CPU的工作流程2.4 小结3. 操作系统3.1 核心功能3.2 操作系统的软硬件结构3.3 什么是进程 / 任务3.4 进程管理3.4.1 管理3.4.2 PCB : 进程…...
线性代数学习-1
线性代数学习-1行图像和列图像行图像列图像总结本文转载于https://herosunly.blog.csdn.net/article/details/88698381 该文章本人认为十分有用,便自己敲一遍笔记加固印象原文链接 原文这个笔记感觉比我老师讲的更加透彻,清晰。很好的展示了线性代数的原…...
人工智能写的十段代码,九个通过测试了
“抢走你工作的不会是 AI ,而是先掌握 AI 能力的人” 编程测试 1. 我想用golang实现二叉树前序,请你帮我写一下代码。 // 定义二叉树节点 type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode }// 前序遍历 func PreOrderTraversal(root *Tre…...
巴塞尔问题数值逼近方法
巴塞尔问题:计算所有平方数的导数和 ∑n1∞1n2limn→∞(112122⋯1n2)\sum_{n1}^{\infty} \frac{1}{n^{2}}\lim _{n \rightarrow\infty}\left(\frac{1}{1^{2}}\frac{1}{2^{2}}\cdots\frac{1}{n^{2}}\right)n1∑∞n21n→∞lim(121221⋯n21) 其理论解为…...
【深度学习环境】Docker
1. Docker 相关安装配置 1.1 docker 安装 参考:https://www.runoob.com/docker/ubuntu-docker-install.html 1.2 nvidia-docker 安装 参考:https://zhuanlan.zhihu.com/p/37519492 1.3 代理加速 参考:https://yeasy.gitbook.io/docker_…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
raid存储技术
1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划,涵盖存储系统的布局、数据存储策略等,它明确数据如何存储、管理与访问,为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...
docker容器互联
1.docker可以通过网路访问 2.docker允许映射容器内应用的服务端口到本地宿主主机 3.互联机制实现多个容器间通过容器名来快速访问 一 、端口映射实现容器访问 1.从外部访问容器应用 我们先把之前的删掉吧(如果不删的话,容器就提不起来,因…...
