当前位置: 首页 > news >正文

re:Invent大会,亚马逊云科技为用户提供端到端的AI服务

11月末,若是你降落在拉斯维加斯麦卡伦国际机场,或许会在大厅里看到一排排AI企业和云厂商相关的夸张标语。走向出口的路上,你的身边会不断穿梭过穿着印有“AI21Lab”“Anthropic”等字样的AI企业员工。或许,你还会被机场工作人员主动询问:“你是来参加亚马逊云科技re:Invent大会的吗?”

 美国当地时间11月26日至12月1日,为期5天的re:Invent大会,将“赌城”暂时变成了AI开发者们的朝圣地——会场所在的威斯人酒店,汇聚了超过5万参会者。

 作为大模型的诞生地,美国AI企业的动向,在某种意义上是AI发展的风向标。机场的横幅,已经点明了当下AI与云密不可分的关系。而在亚马逊云科技re:Invent的展会上,能看到来自AI算力层、模型层、应用层的各类企业。

 作为东道主的亚马逊云科技,在大会上发了两款自研的芯片、一款企业AI助手,更新了从数据库到量子计算的一系列服务。

 主会场欢呼最热烈的两个环节,莫过于英伟达CEO黄仁勋、OpenAI老对手Anthropic CEO Dario Amodei登台,分别与亚马逊云科技CEO Adam Selipsky宣布了云计算和模型服务的新合作。

 相较于OpenAI开发者大会引发的创业者恐慌,在re:Invent的展会中,能看到亚马逊云科技与客户、开发者,在模型服务、数据库、安全方案等方面同台竞技:亚马逊云科技愈发瞄准客户精细化的需求和垂直场景,而处于中间层的To B厂商们,正在向上下游延伸,提供端到端的服务。

 为何能够形成这一种纵横捭阖的AI业态?无论是亚马逊云科技,还是展商,都给出了同样的答案:AI很初期,机会还很多。

 云厂商,不断降低客户“买水”的门槛

 “我需要一些烹饪建议,我将输入3种食材和烹饪的时间,请给我食谱和详细的步骤。”几秒后,一个具有食谱生成功能的界面出现在了屏幕上。这是re:Invent展会上,AWS推出的0代码App生成器PartyRock。

 11月6日,OpenAI发布的GPT Builder,让AI App的开发门槛,降到了“搭积木”的程度。通过将应用开发程序封装进不同的流程模块,用户可以在GPT Builder中用设置参数的方式完成应用的开发。

 怎样的开发模式,才能做到比GPTs的门槛更低?亚马逊云科技用PartyRock给出的答案是真生的“0代码”,只要一句话,就能搞定所有的开发流程。“无代码、可微调、可商用,还支持多系统。”

 除了亚马逊云科技自研的模型Titan,用户可以选择基于Claude、Llama等主流模型,作为AI应用的底座,并且设置相应的参数。

 而相较于已经展露出成为操作系统的野心的OpenAI,亚马逊云科技的策略是和互联网时代的主流操作系统成为盟友,PartyRock生成的AI应用,既可以上架IOS和安卓等主流操作系统,也能作为一个网站发布。

 PartyRock可以被视作亚马逊云科技在2023年4月推出的AI服务Amazon Bedrock的“娱乐版”。至于为什么要发布这样一个易上手的AI App生成产品,亚马逊云科技的意图也很明显:收割一批学生、白领等非技术背景的用户。

 如今美国的AI企业在争相向开发者“卖水”、建立开发者生态的同时,也在不断降低AI工具的使用门槛。不过,相较于PartyRock提供的轻量化的To C应用的开发环境,企业用户的需求则复杂得多。

 如今多数企业对AI应用的需求,是快速复制专家知识。亚马逊云科技在大会上发布的AI工作助手AmazonQ,一方面作为亚马逊云科技的客服和业务经理,为企业答疑解惑,并提供解决方案,另一方面也能连接企业的业务数据、信息和系统,帮助企业创建专属的AI Agent。

 相较于微软此前发布的Copilot,Q的定制化属性更为突出。当企业客户部署自己的Agent时,Q会生成一个网络应用程序,管理员工的访问权限,以此保护企业信息安全,并提供更准确的服务。比如针对销售,Q将优先综合销售相关的业务数据和资料,在进行会议摘要时,Q也会将销售部分的内容优先进行总结。

 对AI而言,没有“无用”的数据

 要提高自动驾驶的安全性,什么样的驾驶数据是有用的?

 在re:Invent展会上,若是进入亚马逊云科技的模拟驾舱,或许对不同数据发挥的价值就有了直观的了解。

 这个装载道路摄像头,并在仪表盘、方向盘、脚踏板上布满传感器的模拟驾舱,通过AWS亚马逊云科技的IoT(物联网)服务,将车内外数据传输到数据库,并可视化呈现。

 模拟舱的试验,是数据对AI的重要性的缩影。在re:Invent的现场能明显感受到,AI是主角,而“Data”又是AI的主角。随着AI的发展,一方面,BI(商业智能)、Text to SQL(文生SQL)等数据相关的AI应用场景,已经被初步验证。另一方面,各行业被要求利用更多的业务数据,去洞察和满足用户愈发精细化的需求。愈来愈多的企业意识到,不存在“无用”的数据。如何让所有的业务数据发挥价值,成了数据服务商提供服务的重点。

 比如亚马逊云科技的数据管理服务DataZone,在大会上推出了AI推荐(AI Recommendations)功能,将原有企业找数据的过程,转化为让具有价值的数据,主动找到企业。企业只需输入自己的业务需求,DataZone就能够提供相应的数据索引,并为企业提供使用数据的建议。

 根据不同的数据生态,美国AI公司们在云服务方案的选择上,也更加精细化。

 经过十多年的发展,美国云厂商已经培养出了较为鲜明的业务优势。几名参展的客户总结:亚马逊云科技注重全球化和大而全的服务,微软Azure注重平台化和定制化的服务,谷歌云则注重于垂直场景。

 端到端,不只是巨头游戏

 在美国,端到端的AI服务不仅仅是云巨头的游戏。

 不少数据库、中间层的厂商都开始建立从数据处理、AI应用定制、安全管理等全流程的AI服务,更甚者与大厂共分蛋糕,提供AI应用开发工具或者框架。

 “Your New AI Copilot for Backup(数据备份的AI助手)。”在展会上,Druva一组标语,宣告自己发布了新的AI助手Dru,并可为客户提供定制化服务。

 在展会上,技术服务商IBM秀出的“肌肉”,是几乎所有大厂都在布局的生成式AI训练、微调、部署服务。这项名为watsonx.ai的功能,也将Prompt Engineering(提示词工程)、训练、调整和部署等模型训练流程,封装到低代码的模块中,让企业能够较低门槛地开发AI模型,和构建AI应用。

 估值高达430亿美元、被英伟达投资的数据处理超级独角兽Databricks,不仅搬来了从数据管理到分析的一整套解决方案,还把与客户合作研发的AI写真生成应用搬到了展会现场。

 目前,国内大部分AI写真应用仍需上传20张不同角度的脸部照片作为机器学习的“养料”。但Databricks这位写真领域的“外行人”,却拿出了一套只需现场拍摄一张正面照、5分钟内生成照片的AI写真方案。除却风格和审美差异,Databricks生成写真的面部细节并不亚于国内AI写真应用。

 而Databricks的老对手,市值超700亿美元的Snowflakes,则把一整套动捕滑雪游戏搬到了展会现场。

 不过,想要进入中国市场,AI外企们寻找合适的商业模式依然是难点。为何“重复造轮子”,依然能够有繁荣的业态?美国AI玩家们给出的答案是:开放的心态+开放的生态。

 开源解决方案提供商Red Hat,做的是开源生态的“搬运工”,为企业提供开源技术方案的选择、微调和部署服务。即便开源社区Huggingface也提供同样的服务,但双方依然保持了合作关系。

 可以看到亚马逊云科技的大多客户,都在做自己的“AmazonQ”(助手),自己的“Qdrant”(亚马逊云科技的向量数据库),甚至自己的“Bedrock”(亚马逊云科技的AI开发平台)。此前已经发布了云计算服务DGX Cloud的英伟达,这次也将首个配置了最新GPU GH200 NVL32的DGX Cloud,搭在了亚马逊云科技的云上。

 刚刚给微软Ignite开发者大会捧场的英伟达CEO黄仁勋,也现身亚马逊云科技的主会场。

 Matt Garman说:”作为客户的MongoDB、Snowflake,都是亚马逊云科技数据库Redshift的有力竞争者,大家都在合作和竞争中相互学习对方的优势”。若是站在供应商的角度,加入生态的合作伙伴越多,亚马逊云科技就能够满足用户更多元的需求。

相关文章:

re:Invent大会,亚马逊云科技为用户提供端到端的AI服务

11月末,若是你降落在拉斯维加斯麦卡伦国际机场,或许会在大厅里看到一排排AI企业和云厂商相关的夸张标语。走向出口的路上,你的身边会不断穿梭过穿着印有“AI21Lab”“Anthropic”等字样的AI企业员工。或许,你还会被机场工作人员主…...

23、什么是卷积的 Feature Map?

这一节介绍一个概念,什么是卷积的 Feature Map? Feature Map, 中文称为特征图,卷积的 Feature Map 指的是在卷积神经网络(CNN)中,通过卷积这一操作从输入图像中提取的特征图。 上一节用示意动图介绍了卷积算…...

安装获取mongodb

目录 本地安装 获取云上资源 获取Atlas免费数据库 本地连接数据库 在Atlas中连接数据库 本文适合初学者或mongodb感兴趣的同学来准备学习测试环境,或本地临时开发环境。mongodb是一个对用户非常友好的数据库。这种友好,不仅仅体现在灵活的数据结构和…...

【模电】基本共射放大电路的工作原理及波形分析

基本共射放大电路的工作原理及波形分析 在上图所示的基本放大电路中,静态时的 I B Q I\tiny BQ IBQ、 I C Q I\tiny CQ ICQ、 U C E Q U\tiny CEQ UCEQ如下图( b )、( c )中虚线所标注。 ( a ) u i 的波形( b ) i B …...

Oracle:左连接、右连接、全外连接、(+)号详解

目录 Oracle 左连接、右连接、全外连接、()号详解 1、左外连接(LEFT OUTER JOIN/ LEFT JOIN) 2、右外连接(RIGHT OUTER JOIN/RIGHT JOIN) 3、全外连接(FULL OUTER JOIN/FULL JOIN&#xff0…...

virtualbox上win7企业微信CPU高问题

问题 linux Opensuse上的Virtualbox安装有win7, win7中跑企业微信CPU占用很高。一杀掉它,CPU占用就立马降下来了。 定位 当cpu占用高时,打开任务管理器,可以定位到svhost.exe占用很高, 优化 右键点击计算机–管理–服务和应用…...

【华为OD题库-055】金字塔/微商-java

题目 微商模式比较典型,下级每赚100元就要上交15元,给出每个级别的收入,求出金字塔尖上的人收入。 输入描述 第一行输入N,表示有N个代理商上下级关系 接下来输入N行,每行三个数:代理商代号 上级代理商代号 代理商赚的钱…...

OpenVINO异步Stable Diffusion推理优化方案

文章目录 Stable Diffusion 推理优化背景技术讲解:异步优化方案思路:异步推理优化原理OpenVINO异步推理Python API同步和异步实现方式对比 oneflow分布式调度优化优势:实现思路 总结: Stable Diffusion 推理优化 背景 2022年&…...

51单片机的智能加湿器控制系统【含proteus仿真+程序+报告+原理图】

1、主要功能 该系统由AT89C51单片机LCD1602显示模块DHT11湿度传感器模块继电器等模块构成。主要适用于智能自动加湿器、湿度保持、湿度控制等相似项目。 可实现基本功能: 1、LCD1602液晶屏实时显示湿度信息 2、DHT11采集湿度 3、按键可以调节适宜人体湿度的阈值范围&#xff0…...

NoSql非关系型数据库

前言:Nosql not only sql,意即“不仅仅是sql”,泛指非关系型数据库。这些类型的数据存储不需要固定的模式(当然也有固定的模式),无需多余的操作就可以横向扩展。NoSql数据库中的数据是使用聚合模型来进行处…...

抖音集团面试挂在2面,复盘后,决定二战.....

先说下我基本情况,本科不是计算机专业,现在是学通信,然后做图像处理,可能面试官看我不是科班出身没有问太多计算机相关的问题,因为第一次找工作,字节的游戏专场又是最早开始的,就投递了&#xf…...

每个.NET开发都应掌握的C#处理文件系统I/O知识点

上篇文章讲述了C#多线程知识点,本文将介绍C#处理文件的知识点。在.NET开发领域,文件系统I/O是一个至关重要的主题,尤其是在处理文件、目录和数据存储方面。C#作为.NET平台的主要编程语言,提供了丰富而强大的文件系统I/O功能&#…...

vue3 中使用 sse 最佳实践,封装工具

工具 // 接受参数 export interface SSEChatParams {url: string,// sse 连接onmessage: (event: MessageEvent) > void,// 处理消息的函数onopen: () > void,// 建立连接触发的事件finallyHandler: () > void,// 相当于 try_finally 中的 finally 部分,不…...

OpenCV快速入门【完结】:总目录——初窥计算机视觉

文章目录 前言目录1. OpenCV快速入门:初探2. OpenCV快速入门:像素操作和图像变换3. OpenCV快速入门:绘制图形、图像金字塔和感兴趣区域4. OpenCV快速入门:图像滤波与边缘检测5. OpenCV快速入门:图像形态学操作6. OpenC…...

车企数据治理实践案例,实现数据生产、消费的闭环链路 | 数字化标杆

随着业务飞速发展,某汽车制造企业业务系统数量、复杂度和数据量都在呈几何级数的上涨,这就对于企业IT能力和IT架构模式的要求越来越高。加之企业大力发展数字化营销、新能源车等业务,希望通过持续优化客户体验,创造可持续发展的数…...

深入学习锁--Lock各种使用方法

一、什么是Lock Lock是一个接口,通常所说的可重入锁是指Lock的一个实现子类ReentrantLock 二、Lock实现步骤: ①创建锁对象Lock lock new ReentrantLock(); ②加锁lock.lock(); ③释放锁lock.unlock(); import java.util.concurrent.locks.Lock; import java.util…...

计算机毕设:基于机器学习的生物医学语音检测识别 附完整代码数据可直接运行

项目视频讲解: 基于机器学习的生物医学语音检测识别 完整代码数据可直接运行_哔哩哔哩_bilibili 运行效果图: 数据展示: 完整代码: #导入python的 numpy matplotlib pandas库 import pandas as pd import numpy as np import matplotlib.pyplot as plt #绘图 import se…...

VMware安装Ubuntu系统(Server端,Desktop端步骤一样)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

Navicat 与 华为云 GaussDB 合作再升级,赋能 GaussDB 分布式数据库

2023 年第三季度,Navicat 首次支持了华为云 GaussDB 主备版数据库。经过双方团队进一步的深化合作,Navicat 完成了 GaussDB 分布式的研发适配工作,赋能 GaussDB 全域数据库产品。 GaussDB 数据库分为主备版和分布式版两种模式。主备版适用于…...

【Docker】从零开始:13.Docker安装tomcat

Docker】从零开始:13.Docker安装Tomcat 下载Tomcat镜像启动Tomcat镜像新版本Tomcat修改访问Tomact首页 下载Tomcat镜像 [rootdocker ~]# docker pull tomcat Using default tag: latest latest: Pulling from library/tomcat 0e29546d541c: Pull complete 9b829c7…...

风控规则引擎(一):Java 动态脚本

风控规则引擎(一):Java 动态脚本 日常场景 共享单车会根据微信分或者芝麻分来判断是否交押金汽车租赁公司也会根据微信分或者芝麻分来判断是否交押金在一些外卖 APP 都会提供根据你的信用等级来发放贷款产品金融 APP 中会根据很复杂规则来判…...

第五十六天|583. 两个字符串的删除操作 72. 编辑距离

583. 两个字符串的删除操作 可以求出最大子序列然后用字符串长度去减&#xff0c;也可以用删除的思路&#xff0c;如下&#xff1a; class Solution { public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()1,vector<int…...

java中Lists.newArrayList和new ArrayList的详细区别?

下面是对Lists.newArrayList()和new ArrayList<>()的详细区别进行举例说明&#xff1a; 创建具有初始数据的列表&#xff1a; java Copy code import com.google.common.collect.Lists; List<String> list1 Lists.newArrayList("apple", "banana…...

从图片或PDF文件识别表格提取内容的简单库img2table

img2table是一个基于OpenCV 图像处理的用于 PDF 和图像的表识别和提取 Python库。由于其设计基于神经网络的解决方案&#xff0c;提供了一种实用且更轻便的替代方案&#xff0c;尤其是在 CPU 上使用时。 该库的特点&#xff1a; 识别图像和PDF文件中的表格&#xff0c;包括在表…...

CSV文件中使用insert 函数在指定列循环插入不同数据

文章目录 一、系统、工具要求二、需求三、代码实现&#xff1a;四、核心代码解读五、逐行更改某一列数据六&#xff1a;实现在文件的末尾增加指定内容列 一、系统、工具要求 pandaspythoncsv Windows 系统 二、需求 我有两个文件&#xff1a; 文件一&#xff1a;subject_ma…...

【华为OD题库-064】最小传输时延I-java

题目 某通信网络中有N个网络结点&#xff0c;用1到N进行标识。网络通过一个有向无环图.表示,其中图的边的值表示结点之间的消息传递时延。 现给定相连节点之间的时延列表times[]{u&#xff0c;v&#xff0c; w)&#xff0c;其中u表示源结点&#xff0c;v表示目的结点&#xff0…...

全文检索[ES系列] - 第495篇

历史文章&#xff08;文章累计490&#xff09; 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六》 M…...

【预计IEEE出版|EI征稿通知】第六届下一代数据驱动网络国际学术会议 (NGDN 2024)

第六届下一代数据驱动网络国际学术会议 (NGDN 2024) The Sixth International Conference on Next Generation Data-driven Networks 2024年4月26-28日 | 中国沈阳 基于前几届在英国埃克塞特 (ISPA 2020) 、中国沈阳 (TrustCom 2021) 和中国武汉 (IEEETrustCom-2022) 成功举…...

C++软件在Win平台运行总结

Windows平台&#xff1a; 1.需要安装运行库&#xff1a;无论是exe还是动态库用的哪种平台工具集(visual2010-visual2019)进行编译&#xff0c;需要安装对应的运行时库vc_redist.x64.exe/vc_redist.x86.exe。比如Exe用的是VisualStdio2010工具集编译&#xff0c;其中链接的一个…...

【数电笔记】16-卡诺图绘制(逻辑函数的卡诺图化简)

目录 说明&#xff1a; 最小项卡诺图的组成 1. 相邻最小项 2. 卡诺图的组成 2.1 二变量卡诺图 2.2 三表变量卡诺图 2.3 四变量卡诺图 3. 卡诺图中的相邻项&#xff08;几何相邻&#xff09; 说明&#xff1a; 笔记配套视频来源&#xff1a;B站&#xff1b;本系列笔记并…...

网站设计制作排名/代做百度首页排名

游标的概念: 游标是SQL的一个内存工作区&#xff0c;由系统或用户以变量的形式定义。游标的作用就是用于临时存储从数据库中提取的数据块。在某些情况下&#xff0c;需要把数据从存放在磁盘的表中调到计算机内存中进行处理&#xff0c;最后将处理结果显示出来或最终写回数据…...

标题翻译为英文wordpress/开一个免费网站

optimizer_index_caching调整基于成本的优化程序的假定值, 即在缓冲区高速缓存中期望用于嵌套循环联接的索引块的百分比。它将影响使用索引的嵌套循环联接的成本。将该参数设置为一个较高的值,可以使嵌套循环联接相对于优化程序来说成本更低。 索引在缓冲区中出现的机率(百分比…...

wordpress多图片/在线推广企业网站的方法有哪些

在这篇文章里讲述了历史数据的使用。在实际使用时&#xff0c;有时会发现历史数据有个边界问题。下面进行讲解&#xff0c; 一 问题 下面是带历史数据功能的server代码&#xff0c; #include <signal.h> #include <stdlib.h> #include <unistd.h>#include &…...

WordPress书籍插件/上首页seo

硬盘是用来存储数据的&#xff0c;为了使用和管理方便&#xff0c;这些数据以文件的形式存储在硬盘上。任何操作系统都有自己的文件管理系统&#xff0c;不同的文件系统又有各自不同的逻辑组织方式。例如&#xff1a;常见的文件系统有FAT&#xff0c;NTFS&#xff0c;EXT&#…...

服务器搭建网站视频教程/合肥seo公司

题目链接 这里的n很大10{100}&#xff0c;数字十分大不能使用int、double等类型存储&#xff0c;需要使用字符串存储。 统计数字每位数上数字的和&#xff0c;再对于位数数字和转化为文字拼音。 #include <stdio.h> #include<string.h> int main(){char a[1002];…...

网络游戏那个网站做的最好/软文发布推广平台

先复习Java中的异常 java.lang.Throwable  顶层父类 |– Error错误&#xff1a;JVM内部的严重问题&#xff0c;如OOM&#xff0c;程序员需在代码中无法处理。 |–Exception异常&#xff1a;普通的问题。通过合理的处理&#xff0c;程序还可以回到正常执行流程。要求程序员要进…...