当前位置: 首页 > news >正文

2015年五一杯数学建模C题生态文明建设评价问题解题全过程文档及程序

2015年五一杯数学建模

C题 生态文明建设评价问题

原题再现

  随着我国经济的迅速发展,生态文明越来越重要,生态文明建设被提到了一个前所未有的高度。党的十八大报告明确提出要大力推进生态文明建设,报告指出“建设生态文明,是关系人民福祉、关乎民族未来的长远大计。面对资源约束趋紧、环境污染严重、生态系统退化的严峻形势,必须树立尊重自然、顺应自然、保护自然的生态文明理念,把生态文明建设放在突出地位,融入经济建设、政治建设、文化建设、社会建设各方面和全过程,努力建设美丽中国,实现中华民族永续发展”。党的十八届三中全会则进一步明确,建设生态文明,必须建立系统完整的生态文明制度体系。因此对生态文明建设评价体系的研究具有重要意义。
  1、请通过查阅相关文献,了解我国生态文明建设的评价指标和评价模型,列举现有的生态文明建设的评价指标。
  2、对现有生态文明建设的评价指标进行分析,选择其中几个重要的、可行的评价指标,结合经济发展的情况,建立评价我国生态文明建设状况的数学模型。
  3、由于我国地理位置和经济条件的差异,各省(市)生态文明建设水平各有高低,请利用最新的数据,选取最具有代表性的十个省(市),根据前面建立的数学模型对这十个省(市)生态文明建设的程度进行评价。
  4、根据上述评价结果,对生态文明建设相对落后的省(市)提出改进措施,建立数学模型预测未来几年这些措施的实施效果,最后请结合预测的结果给有关部门写一份政策建议(1~2 页)

整体求解过程概述(摘要)

  本文针对于生态文明建设的评价问题,选取了评价生态建设文明的具有代表性的几个指标,并且通过建立城市生态文明建设指标预测模型,来判断地区生态文明建设程度。
  对于第一问,针对我国现有的生态文明建设的评价指标问题,我们首先查阅了全国在省级生态文明建设评价方面较为权威的北京林业大学生态文明研究中心公布的中国省级生态文明建设评价报告,以及其他具体于各地区省市的生态文明建设的论文,在此基础上,列举出来了 6 大类,18 个较为重要的评价指标。
  对于第二问,我们首先根据罗列出的指标中的重要程度以及数据获取的可行性和权威性和反映大类指标程度选择了单位 GDP 能耗、单位 GDP 水耗和单位 GDP 废水、废气排放量、绿化覆盖率、人均公共图书藏书量。然后通过熵值法确定了各项指标权重,大致通过三个步骤,分别是原始数据矩阵归一化,定义熵,定义熵权。其次根据国际标准、欧美等发达国家的现状值确定了各项指标的具体度量标准,借助这些度量标准我们通过标准比值法,进一步确定了每一项指标的发展水平指数,最后通过建立的综合评价模型得到我们的最终结果,也就是生态文明建设发展水平指数。为了更好的反映每个省份的情况,我们根据系统发展水平指数值得分范围将发展水平评价等级分为 7 个等级(A 为最优,G 为最差),更加将指标具体化。
  对于第三问,首先我们综合考虑了各地区的生态活力,环境质量和经济发展水平,先将全国 31 个省(自治区、直辖市,不含港澳台)的生态文明建设归纳为 5 个类型,然后再加上地理条件的因素综合选择最终确定了河北、山西、山东、四川、北京、辽宁、甘肃、云南、福建和内蒙古十个省市自治区作为我们的研究对象,然后我们通过查阅统计年鉴以及登陆国家统计局下载等方式找到了各个地区从 2009~2013 的权威统计数据,最后带入我们建立的模型之中,通过计算得到了每个地区的生态文明建设发展水平指数。
  对于第四问,我们首先根据问题三的评价结果,挑选出了生态文明建设相对落后并具有代表性的云南,在子系统层次,找出制约其生态文明建设的短板,有针对性地提出改进措施。在忽略重大自然突变和措施实施顺利的前提下,针对不同指标,利用灰色预测模型结合 logistic 的方法,外推出改进措施对各项指标的量化影响。将量化后的指标结果,代入到问题二建立的生态文明建设发展水平模型,检验措施实施后的效果。根据结果进一步完善生态文明建设的改进措施,并形成一份高效高可行性的生态文明建设政策建议。
  我们建立的城市生态文明建设指标预测模型,与传统的评价相比,虽然在全面性上有所差距,但是简便易行,能够较好的反映地区的生态文明建设程度。

模型假设:

  1.假设评价生态文明建设各指标之间相互作用关系忽略不计;
  2.假设在预测模型中,未来几年没有重大自然突变;
  3.假设从官方获取的各个省份的指标的统计数据信息真实可靠;
  4.假设各个省市按照原有进程和规律对生态文明进行建设和发展;
  5.假设不受资源环境约束,未来 15 年内各省区生态文明建设按照当前趋势发展,各城市增长率保持相应的速度,考虑到随着高能耗高污染的企业减少,未来资源节约和污染控制各项指标效率难度不断加大的趋势;

问题分析:

  对于问题一的分析
  对于问题一,主要是让我们在了解现有的生态文明建设的评价指标和模型的基础上,首先列举出对于生态文明建设有影响的各种指标,以便于下面问题的分析。我们首先查阅了全国在省级生态文明建设评价方面较为权威的北京林业大学生态文明研究中心公布的中国省级生态文明建设评价报告,由于北林大生态文明研究中心承担了国家林业局“生态文明建设的评价体系与信息系统技术研究”项目,构建了中国省级生态文明建设评价指标体系(ECCI),它在评价指标和模型建立上有着很好的借鉴意义。除此之外,我们还查阅了具体于地区省市的生态文明建设的论文,在此基础上,列举出来了 18个较为重要的指标。
  对于问题二的分析
  问题二要求我们选取其中的一些典型的指标,建立评价我国生态文明建设状况的数学模型。首先我们需要选取最具有代表性的几个指标。由于在列举评价指标的时候我们已经对指标进行了初步的分类,所以我们对于每一大类,只在其子系统层中根据其重要程度以及数据的权威性选择了一个或多个指标来反映,我们选择了人均 GDP 来反映经济发展;选择城镇化率来反映社会进步;对于资源节约和环境控制,由于其较为重要,我们分别选取了单位 GDP 能耗、单位 GDP 水耗和单位 GDP 废水、废气排放量两项指标来反映;还选择了绿化覆盖率来反映生态环境;人均公共图书藏书量来反映生态文化。在建立模型时,我们首先需要确定每个指标的权重,确定权重的方法中,较为常用的有熵值法和层次分析法,由于在此次的模型之中,我们的层次较为简单,而且我们的数据都是具体的值,层次分析法不仅增加了过多的计算过程,而且对于结果也可能产生不好的影响,所以我们选择了熵值法来确定权重,主要通过三个步骤,分别是原始数据矩阵归一化;定义熵;定义熵权。最终确定各项指标的权重。其次我们需要建立评价指标度量标准来对我们的结果进行具体的评价。我们查阅了大量的数据,根据国际标准、欧美等发达国家的现状值来确定各项指标的具体度量标准。通过这些度量标准我们通过标准比值法,进一步确定了每一项指标的发展水平指数,然后通过我们建立的综合评价模型最终得到我们的最终结果,也就是生态文明建设发展水平指数。为了更好的反映每个省份的情况,我们根据系统发展水平指数值得分范围将发展水平评价等级分为 7 个等级(A 为最优,G 为最差),更加将指标具体化。
  对于问题三的分析
  问题三中要求选取最具有代表性的十个省(市),根据前面建立的数学模型对这十个省(市)生态文明建设的程度进行评价。首先要保证选择的十个省(市)具有一定的代表性,能够反映全国的情况,我们依据综合考虑了各地区的地区生态活力,环境质量和各地区的经济发展水平,先将全国 31 个省(自治区、直辖市,不含港澳台)的生态文明建设归纳为 5 个类型,然后再加上地理条件的因素综合选择最终确定了河北、山西、山东、四川、北京、辽宁、甘肃、云南、福建和内蒙古十个省市自治区作为我们的研究对象,然后我们通过查阅统计年鉴以及登陆国家统计局下载等方式找到了各个地区从2009~2013 的权威统计数据,然后带入我们建立的模型之中,通过计算得到了每个地区的生态文明建设发展水平指数。
  对于问题四的分析
  问题四要求我们对于落后的省份提出改进措施,然后建立数学模型预测未来几年这些措施的实施效果。我们首先根据问题三的评价结果,我们可以挑选出生态文明建设相对落后的省(市),在子系统层次,找出制约其生态文明建设的短板,有针对性地提出改进措施。在忽略重大自然突变和措施实施顺利的前提下,针对不同指标,利用灰色预测模型结合 logistic 的方法,外推出改进措施对各项指标的量化影响。将量化后的指标结果,代入到问题二建立的生态文明建设发展水平模型,检验措施实施后的效果显著性。根据结果进一步完善生态文明建设的改进措施,并形成一份高效高可行性的生态文明建设政策建议。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

clc;
clear;
A=[1 1.2 1.5 1.5;
0.833 1 1.2 1.2;
0.667 0.833 1 1.2;
0.667 0.833 0.833 1];
%因素
对比矩阵 A,只需要改变矩阵 A
[m,n]=size(A); %获取指标个数
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];
R=rank(A); %求判断矩阵的秩
[V,D]=eig(A); %求判断矩阵的特征
值和特征向量,V 特征值,D 特征向量;
tz=max(D);
B=max(tz); %最大特征值
[row, col]=find(D==B); %最大特征值所在位置
C=V(:,col); %对应特征向量
CI=(B-n)/(n-1); %计算一致性检验指标
CI
CR=CI/RI(1,n);
if CR<0.10
disp('CI=');disp(CI);
disp('CR=');disp(CR);
disp('对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:');
Q=zeros(n,1);
for i=1:n
Q(i,1)=C(i,1)/sum(C(:,1)); %特征向量标准化
end
Q %输出
权重向量
else
disp('对比矩阵 A 未通过一致性检验,需对对比矩阵 A 重新构造');
end
CI=
0.0014
CR=
0.0016对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:
Q =
0.3158
0.2579
0.2229
0.2034
>> clear;
>> A=[1 1/3 1/5 1/5
3 1 1/3 1/5
5 3 1 1/3
5 5 3 1];
>> [m,n]=size(A); %获取指标个数
>> RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];
>> R=rank(A); %求判断矩阵
的秩
>> [V,D]=eig(A); %求判断矩阵的
特征值和特征向量,V 特征值,D 特征向量;
>> tz=max(D);
>> B=max(tz); %最大特征值
>> [row, col]=find(D==B); %最大特征值所在位置
>> C=V(:,col); %对应特征向
量
>> CI=(B-n)/(n-1); %计算一致性检验
指标 CI
>> CR=CI/RI(1,n);
>> if CR<0.10
disp('CI=');disp(CI);
disp('CR=');disp(CR);
disp('对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:');
Q=zeros(n,1);
for i=1:n
Q(i,1)=C(i,1)/sum(C(:,1)); %特征向量标准化
end
else
disp('对比矩阵 A 未通过一致性检验,需对对比矩阵 A 重新构造');
end
CI=
0.0660
CR=
0.0734
对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:
Q =
0.0636
0.1219
0.2706
0.5439
clc;
clear;
A=[1 1/2 1/3 1/5
2 1 1/4 1/5
3 4 1 1/3
5 5 3 1];
%因素
对比矩阵 A,只需要改变矩阵 A
[m,n]=size(A); %获取指标个数
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];
R=rank(A); %求判断矩阵的秩
[V,D]=eig(A); %求判断矩阵的特征
值和特征向量,V 特征值,D 特征向量;
tz=max(D);
B=max(tz); %最大特征值
[row, col]=find(D==B); %最大特征值所在位置
C=V(:,col); %对应特征向量
CI=(B-n)/(n-1); %计算一致性检验指标
CI
CR=CI/RI(1,n);
if CR<0.10
disp('CI=');disp(CI);
disp('CR=');disp(CR);
disp('对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:');
Q=zeros(n,1);
for i=1:n
Q(i,1)=C(i,1)/sum(C(:,1)); %特征向量标准化
end
Q %输出
权重向量
else
disp('对比矩阵 A 未通过一致性检验,需对对比矩阵 A 重新构造');
end
CI=
0.0540
CR=
0.0600
对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:
Q =
0.0796
0.1061
0.2673
0.5471
clc;
clear;
A=[1 1/2 1/4 1/6
2 1 1/4 1/5
4 4 1 1/2
6 5 2 1];
%因素
对比矩阵 A,只需要改变矩阵 A
[m,n]=size(A); %获取指标个数
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];
R=rank(A); %求判断矩阵的秩
[V,D]=eig(A); %求判断矩阵的特征
值和特征向量,V 特征值,D 特征向量;
tz=max(D);
B=max(tz); %最大特征值
[row, col]=find(D==B); %最大特征值所在位置
C=V(:,col); %对应特征向量
CI=(B-n)/(n-1); %计算一致性检验指标
CI
CR=CI/RI(1,n);
if CR<0.10
disp('CI=');disp(CI);
disp('CR=');disp(CR);
disp('对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:');
Q=zeros(n,1);
for i=1:n
Q(i,1)=C(i,1)/sum(C(:,1)); %特征向量标准化
end
Q %输出
权重向量
else
disp('对比矩阵 A 未通过一致性检验,需对对比矩阵 A 重新构造');
end
CI=
0.0219
CR=
0.0244
对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:
Q =
0.0704
0.1048
0.3122
0.5125
clc;
clear;
A=[1 1/5 1/5 1/3;
5 1 1 3;
5 1 1 3;
3 1/3 1/3 1];
%因素
对比矩阵 A,只需要改变矩阵 A
[m,n]=size(A); %获取指标个数
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];
R=rank(A); %求判断矩阵的秩
[V,D]=eig(A); %求判断矩阵的特征
值和特征向量,V 特征值,D 特征向量;
tz=max(D);
B=max(tz); %最大特征值
[row, col]=find(D==B); %最大特征值所在位置
C=V(:,col); %对应特征向量
CI=(B-n)/(n-1); %计算一致性检验指标
CI
CR=CI/RI(1,n);
if CR<0.10
disp('CI=');disp(CI);
disp('CR=');disp(CR);
disp('对比矩阵 A 通过一致性检验,各向量权重向量 Q 为:');
Q=zeros(n,1);
for i=1:n
Q(i,1)=C(i,1)/sum(C(:,1)); %特征向量标准化
end
Q %输出
权重向量
else
disp('对比矩阵 A 未通过一致性检验,需对对比矩阵 A 重新构造');
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

相关文章:

2015年五一杯数学建模C题生态文明建设评价问题解题全过程文档及程序

2015年五一杯数学建模 C题 生态文明建设评价问题 原题再现 随着我国经济的迅速发展&#xff0c;生态文明越来越重要&#xff0c;生态文明建设被提到了一个前所未有的高度。党的十八大报告明确提出要大力推进生态文明建设&#xff0c;报告指出“建设生态文明&#xff0c;是关系…...

java:slf4j、log4j、log4j2、logback日志框架的区别与示例

文章目录 背景SLF4J - 简单日志门面:Log4j - 强大而古老的日志框架:Log4j2 - Log4j的升级版:Logback - Log4j的继任者:比较Springboot集成slf4j、log4j2参考 背景 在Java开发中&#xff0c;日志记录是一个不可或缺的组成部分。为了满足不同的需求&#xff0c;Java社区涌现出多…...

Mysql学习查缺补漏----02 mysql之DCL 数据控制语言

查看数据库里都有哪些用户。 使用root任何一个用户都可以登录。 本机登录。 也可以这样登录其他的机器。 、 修改user表。 刷新权限&#xff1a; 现在我们看到了只有本机才能登陆。 我们这样就可以限制这个mysql指定某台服务器登录。 详解忘记密码以及如何修改用户密码 我们…...

【Flink基础】-- 延迟数据的处理

目录 ​一、关于延迟的一些概念 1、什么是延迟? 2、什么导致互联网延迟?...

通过keepalived+nginx实现 k8s apiserver节点高可用

一、环境准备 K8s 主机配置&#xff1a; 配置&#xff1a; 4Gib 内存/4vCPU/60G 硬盘 网络&#xff1a;机器相互可以通信 k8s 实验环境网络规划&#xff1a; podSubnet&#xff08;pod 网段&#xff09; 10.244.0.0/16 serviceSubnet&#xff08;service 网段&#xff09;: 1…...

JavaScript 数组

JavaScript 数组 用来存储一系列相关数据的一种数据类型 创建数组 字面量方式 ----- [1,2,3,4,5,6];实例化构造函数 ----- new Array(1,2,3,4,5,6);组成数组的元素可以是任意的数据类型包括数组本身&#xff1b; new Array(n): n 表示数组的长度 内容操作 获取&#xff08;查…...

【数据结构】二叉树的实现

目录 1. 前言2. 二叉树的实现2.1 创建一棵树2.2 前序遍历2.2.1 分析2.2.2 代码实现2.2.3 递归展开图 2.3 中序遍历2.3.1 分析2.3.2 代码实现2.3.3 递归展开图 2.4 后序遍历2.4.1 分析2.4.2 代码实现2.4.3 递归展开图 2.5 求节点个数2.5.1 分析2.5.2 代码实现 2.6 求叶子节点个数…...

振弦采集仪在土体与岩体监测中的可靠性与精度分析

振弦采集仪在土体与岩体监测中的可靠性与精度分析 振弦采集仪是一种用于土体和岩体监测的重要设备&#xff0c;它可以通过测量振动信号来获取土体或岩体的力学参数&#xff0c;如应力、应变、弹性模量等。而振弦采集仪的可靠性和精度是影响其应用效果的关键因素。 首先&#x…...

C语言进阶之路-指针、数组等混合小boss篇

目录 一、学习目标&#xff1a; 二、指针、数组的组合技能 引言 指针数组 语法 数组指针 三、勇士闯关秘籍 四、大杂脍 总结 一、学习目标&#xff1a; 知识点&#xff1a; 明确指针数组的用法和特点掌握数组指针的用法和特点回顾循环等小怪用法和特点 二、指针、数…...

【矩阵论】Chapter 7—Hermite矩阵与正定矩阵知识点总结复习

文章目录 1 Hermite矩阵2 Hermite二次型3 Hermite正定&#xff08;非负定矩阵&#xff09;4 矩阵不等式 1 Hermite矩阵 定义 设 A A A为 n n n阶方阵&#xff0c;如果称 A A A为Hermite矩阵&#xff0c;则需满足 A H A A^HA AHA&#xff0c;其中 A H A^H AH表示 A A A的共轭转…...

Golang语言基础之切片

概述 数组的长度是固定的并且数组长度属于类型的一部分&#xff0c;所以数组有很多的局限性 func arraySum(x [3]int) int{sum : 0for _, v : range x{sum sum v}return sum } 这个求和函数只能接受 [3]int 类型&#xff0c;其他的都不支持。 切片 切片&#xff08;Slic…...

SpringCloud-服务消费者Fegin调用时无法获取异常信息

一、前言 假设有以下需求&#xff1a; 服务消费者A调用服务提供者B往MySQL新增一条人员信息服务提供者做了一个逻辑判断&#xff1a;若无该人员信息则新增&#xff0c;若已存在该人员信息&#xff0c;则返回给消费者异常状态码及异常信息&#xff1a;“请勿添加重复数据” 问…...

re:invent 2023 Amazon Q 初体验

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre&#xff0c;知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 前言 亚马逊云科技在2023 re:Invent全球大会上宣布推出 Amazon…...

认知觉醒(四)

认知觉醒(四) 第三节 耐心&#xff1a;得耐心者得天下 20世纪八九十年代&#xff0c;金庸的武侠小说风靡全国。如今&#xff0c;虽然几十年过去了&#xff0c;金庸先生也已与世长辞&#xff0c;但他留下的作品依然广受欢迎&#xff0c;被奉为经典。如此成就&#xff0c;自然…...

AI模型部署 | onnxruntime部署YOLOv8分割模型详细教程

本文首发于公众号【DeepDriving】&#xff0c;欢迎关注。 0. 引言 我之前写的文章《基于YOLOv8分割模型实现垃圾识别》介绍了如何使用YOLOv8分割模型来实现垃圾识别&#xff0c;主要是介绍如何用自定义的数据集来训练YOLOv8分割模型。那么训练好的模型该如何部署呢&#xff1f…...

模拟电路学习笔记(一)之芯片篇(持续更新)

模拟电路学习笔记&#xff08;一&#xff09;之芯片篇&#xff08;持续更新&#xff09; 1.CD4047BE芯片 CD4047是一种包含高电压的多谐振荡器&#xff0c;该器件的操作可以在两种模式下完成&#xff0c;分别是单稳态和非稳态。CD4047需要一个外部电阻器和电容器来决定单稳态…...

如何利用CentOS7+docker+jenkins+gitee部署springboot+vue前后端项目(保姆教程)

博主介绍&#xff1a;Java领域优质创作者,博客之星城市赛道TOP20、专注于前端流行技术框架、Java后端技术领域、项目实战运维以及GIS地理信息领域。 &#x1f345;文末获取源码下载地址&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb;…...

qt 5.15.2 主窗体事件及绘制功能

qt 5.15.2 主窗体事件及绘制功能 显示主窗体效果图如下所示&#xff1a; main.cpp #include "mainwindow.h"#include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);MainWindow w;w.setFixedWidth(600);w.setFixedHeight(6…...

(2)(2.4) TerraRanger Tower/Tower EVO(360度)

文章目录 前言 1 安装传感器并连接 2 通过地面站进行配置 3 参数说明 前言 TeraRanger Tower 可用于在 Loiter 和 AltHold 模式下进行目标规避。传感器的最大可用距离约为 4.5m。 TeraRanger Tower EVO 可用于在 Loiter 和 AltHold 模式下进行目标规避。传感器的最大可用…...

Redis_主从复制、哨兵模式、集群模式详解

Redis的主从复制 为什么Redis要引入主从复制&#xff1f;what&#xff1f; 在这里博主为小伙伴们简单的做下解释&#xff0c;可以了解一下 实际生产环境下&#xff0c;单机的redis服务器是无法满足实际的生产需求的。 第一&#xff0c;单机的redis服务器很容易发生单点故障&am…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...