当前位置: 首页 > news >正文

使用Pytoch实现Opencv warpAffine方法

随着深度学习的不断发展,GPU/NPU的算力也越来越强,对于一些传统CV计算也希望能够直接在GPU/NPU上进行,例如Opencv的warpAffine方法。Opencv的warpAffine的功能主要是做仿射变换,如果不了解仿射变换的请自行了解。由于Pytorch的图像坐标系(图像左上角对应坐标(-1, -1)右下角对应坐标(1, 1))与Opencv的坐标系(图像左上角对应坐标(0, 0)右下角对应坐标(w - 1, h - 1))有差异,故无法直接使用Opencv的warp矩阵对Pytorch数据进行变换。
主要参考文章:https://zhuanlan.zhihu.com/p/349741938


本文逻辑推理部分主要是参照上述的参考文章,这里再简单推导一遍。后面会给出基于该公式推导的Pytorch实现。

下面公式简单介绍了原始图片中 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)点通过仿射变化到输出图片 ( x 2 , y 2 ) (x_2, y_2) (x2,y2)点的过程,假设 ( x , y ) (x, y) (x,y)对应Opencv图像坐标系。

[ x 2 y 2 1 ] = [ a b c d e f 0 0 1 ] [ x 1 y 1 1 ] \begin{bmatrix} x_2\\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ y_1 \\ 1 \end{bmatrix} x2y21 = ad0be0cf1 x1y11
现在要将Opencv图像坐标系下的 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)点映射到Pytorch的图像坐标系下 ( u 1 , v 1 ) (u_1, v_1) (u1,v1)点,由于Pytorch的图像坐标系是从-1到1,所以对Opencv的坐标做如下变化即可。注,由于Opencv坐标从0开始,所以对于原图宽为src_w,高为src_h实际右下角的坐标应该是 ( s r c w − 1 , s r c h − 1 ) (src_w - 1, src_h - 1) (srcw1,srch1)
u 1 = x 1 − s r c w − 1 2 s r c w − 1 2 = 2 x 1 s r c w − 1 − 1 u_1 = \frac{x_1 - \frac{src_w - 1}{2} }{\frac{src_w - 1}{2}} = \frac{2x_1}{src_w - 1} -1 u1=2srcw1x12srcw1=srcw12x11
v 1 = y 1 − s r c h − 1 2 s r c h − 1 2 = 2 y 1 s r c h − 1 − 1 v_1 = \frac{y_1 - \frac{src_h - 1}{2} }{\frac{src_h - 1}{2}} = \frac{2y_1}{src_h - 1} -1 v1=2srch1y12srch1=srch12y11
写成矩阵乘的形式:
[ u 1 v 1 1 ] = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] [ x 1 y 1 1 ] \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ y_1 \\ 1 \end{bmatrix} u1v11 = srcw12000srch120111 x1y11

那么同理将仿射变化后Opencv图像坐标系下的 ( x 2 , y 2 ) (x_2, y_2) (x2,y2)点映射到Pytorch的图像坐标系下 ( u 2 , v 2 ) (u_2, v_2) (u2,v2)点,其中dst_w为仿射变化后输出图片的宽度,dst_h为仿射变化后输出图片的高度:
[ u 2 v 2 1 ] = [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] [ x 2 y 2 1 ] \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2\\ y_2 \\ 1 \end{bmatrix} u2v21 = dstw12000dsth120111 x2y21
然后将上面两个公式代入最开始的仿射变化公式中:
[ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 [ u 2 v 2 1 ] = [ a b c d e f 0 0 1 ] [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] − 1 [ u 1 v 1 1 ] \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} dstw12000dsth120111 1 u2v21 = ad0be0cf1 srcw12000srch120111 1 u1v11
整理得到:
[ u 2 v 2 1 ] = [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] [ a b c d e f 0 0 1 ] [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] − 1 [ u 1 v 1 1 ] \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} u2v21 = dstw12000dsth120111 ad0be0cf1 srcw12000srch120111 1 u1v11
引用参考文章中大佬的原话,这个暂时没在Pytorch官方文档中找到,但是通过实验,确实如此。

affine_grid定义为目标图到原图的变换

所以,Pytorch中使用的theta实际是从 ( u 2 , v 2 ) (u_2, v_2) (u2,v2) ( u 1 , v 1 ) (u_1, v_1) (u1,v1)的矩阵:

[ u 1 v 1 1 ] = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] [ a b c d e f 0 0 1 ] − 1 [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 [ u 2 v 2 1 ] \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} u1v11 = srcw12000srch120111 ad0be0cf1 1 dstw12000dsth120111 1 u2v21
故Opencv使用的theta到Pytorch的theta变换过程如下:
t h e t a ( p y t o r c h ) = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] t h e t a ( o p e n c v ) − 1 [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 theta_{(pytorch)} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} {theta}^{-1}_{(opencv)} \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} theta(pytorch)= srcw12000srch120111 theta(opencv)1 dstw12000dsth120111 1

最后给出对应代码实现:

"""
pip install numpy
pip install opencv-python
pip install opencv-python-headless
"""
import numpy as np
import cv2
import torch
import torch.nn.functional as Fdef cal_torch_theta(opencv_theta: np.ndarray, src_h: int, src_w: int, dst_h: int, dst_w: int):m = np.concatenate([opencv_theta, np.array([[0., 0., 1.]], dtype=np.float32)])m_inv = np.linalg.inv(m)a = np.array([[2 / (src_w - 1), 0., -1.],[0., 2 / (src_h - 1), -1.],[0., 0., 1.]], dtype=np.float32)b = np.array([[2 / (dst_w - 1), 0., -1.],[0., 2 / (dst_h - 1), -1.],[0., 0., 1.]], dtype=np.float32)b_inv = np.linalg.inv(b)pytorch_m = a @ m_inv @ b_invreturn torch.as_tensor(pytorch_m[:2], dtype=torch.float32)def main():img_bgr = cv2.imread("1.png")src_h, src_w, _ = img_bgr.shapeprint(f"src image h:{src_h}, w:{src_w}")dst_h = src_h * 2dst_w = src_w * 2print(f"dst image h:{src_h}, w:{src_w}")theta = cv2.getRotationMatrix2D(center=(src_w // 2, src_h // 2), angle=-30, scale=2)# using opencv warpAffinewarp_img_bgr = cv2.warpAffine(src=img_bgr,M=theta,dsize=(dst_w, dst_h),flags=cv2.INTER_LINEAR,borderValue=(0, 0, 0))cv2.imwrite("warp_img.jpg", warp_img_bgr)# using pytorch grid_sampletorch_img_bgr = torch.as_tensor(img_bgr, dtype=torch.float32).unsqueeze(0).permute([0, 3, 1, 2])  # [N,C,H,W]torch_theta = cal_torch_theta(theta, src_h, src_w, dst_h, dst_w).unsqueeze(0)  # [N, 2, 3]grid = F.affine_grid(torch_theta, size=[1, 3, dst_h, dst_w])torch_warp_img_bgr = F.grid_sample(torch_img_bgr, grid=grid, mode="bilinear", padding_mode="zeros")torch_warp_img_bgr = torch_warp_img_bgr.permute([0, 2, 3, 1]).squeeze(0)  # [H, W, C]cv2.imwrite("torch_warp_img.jpg", torch_warp_img_bgr.numpy())# save concat imgcv2.imwrite("compare_warp_img.jpg",np.concatenate([warp_img_bgr, torch_warp_img_bgr.numpy()], axis=1))if __name__ == '__main__':main()

下图是生成的compare_warp_img.jpg图片,左边是通过Opencv warpAffine得到的图片,右边是通过Pytorch grid_sample得到的图片。可以看到基本是一致,如果使用专业的图像对比工具还是能看到像素差异(很难完全对齐)。
在这里插入图片描述

相关文章:

使用Pytoch实现Opencv warpAffine方法

随着深度学习的不断发展,GPU/NPU的算力也越来越强,对于一些传统CV计算也希望能够直接在GPU/NPU上进行,例如Opencv的warpAffine方法。Opencv的warpAffine的功能主要是做仿射变换,如果不了解仿射变换的请自行了解。由于Pytorch的图像…...

Hello World

世界上最著名的程序 from fastapi import FastAPIapp FastAPI()app.get("/") async def root():return {"message": "Hello World"}app.get("/hello/{name}") async def say_hello(name: str):return {"message": f"…...

【Python】Python读Excel文件生成xml文件

目录 ​前言 正文 1.Python基础学习 2.Python读取Excel表格 2.1安装xlrd模块 2.2使用介绍 2.2.1常用单元格中的数据类型 2.2.2 导入模块 2.2.3打开Excel文件读取数据 2.2.4常用函数 2.2.5代码测试 2.2.6 Python操作Excel官方网址 3.Python创建xml文件 3.1 xml语法…...

c++--类型行为控制

1.c的类 1.1.c的类关键点 c类型的关键点在于类存在继承。在此基础上,类存在构造,赋值,析构三类通用的关键行为。 类型提供了构造函数,赋值运算符,析构函数来让我们控制三类通用行为的具体表现。 为了清楚的说明类的构…...

笔记64:Bahdanau 注意力

本地笔记地址:D:\work_file\(4)DeepLearning_Learning\03_个人笔记\3.循环神经网络\第10章:动手学深度学习~注意力机制 a a a a a a a a a a a...

面试官问:如何手动触发垃圾回收?幸好昨天复习到了

在Java中,手动触发垃圾回收可以使用 System.gc() 方法。但需要注意,调用 System.gc() 并不能确保立即执行垃圾回收,因为具体的垃圾回收行为是由Java虚拟机决定的,而不受程序员直接控制。 public class GarbageCollectionExample …...

操作系统的运行机制+中断和异常

一、CPU状态 在CPU设计和生产的时候就划分了特权指令和非特叔指令,因此CPU执行一条指令前就能断出其类型 CPU有两种状态,“内核态”和“用户态” 处于内核态时,说明此时正在运行的是内核程序,此时可以执行特权指令。 处于用户态…...

Python实战:批量加密Excel文件指南

更多Python学习内容:ipengtao.com 大家好,我是彭涛,今天为大家分享 Python实战:批量加密Excel文件指南,全文3800字,阅读大约10分钟。 在日常工作中,保护敏感数据是至关重要的。本文将引导你通过…...

二叉树链式结构的实现和二叉树的遍历以及判断完全二叉树

二叉树的实现 定义结构体 我们首先定义一个结构来存放二叉树的节点 结构体里分别存放左子节点和右子节点以及节点存放的数据 typedef int BTDataType; typedef struct BinaryTreeNode {BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right; }BTNode;…...

vue中的动画组件使用及如何在vue中使用animate.css

“< Transition >” 是一个内置组件&#xff0c;这意味着它在任意别的组件中都可以被使用&#xff0c;无需注册。它可以将进入和离开动画应用到通过默认插槽传递给它的元素或组件上。进入或离开可以由以下的条件之一触发&#xff1a; 由 v-if 所触发的切换由 v-show 所触…...

qt 5.15.2 网络文件下载功能

qt 5.15.2 网络文件下载功能 #include <QCoreApplication>#include <iostream> #include <QFile> #include <QTextStream> // #include <QtCore> #include <QtNetwork> #include <QNetworkAccessManager> #include <QNetworkRep…...

Wifi adb 操作步骤

1.连接usb 到主机 手机开起热点&#xff0c;电脑和车机连接手机&#xff0c;或者电脑开热点&#xff0c;车机连接电脑&#xff0c;车机和电脑连接同一个网络 因为需要先使用usb&#xff0c;后面切换到wifi usb 2.查看车机ip地址&#xff0c;和电脑ip地址 电脑win键r 输入cmd…...

湿货 - 231206 - 关于如何构造输入输出数据并读写至文件中

TAG - 造数据、读写文件 造数据、读写文件 造数据、读写文件//*.in // #include<bits/stdc.h> using namespace std;/* *********** *********** 全局 ********** *********** */ string Pre_File_Name; ofstream IN_cout; int idx;void Modify_ABS_Path( string& …...

EasyMicrobiome-易扩增子、易宏基因组等分析流程依赖常用软件、脚本文件和数据库注释文件

啥也不说了&#xff0c;这个好用&#xff0c;给大家推荐&#xff1a;YongxinLiu/EasyMicrobiome (github.com) 大家先看看引用文献吧&#xff0c;很有用&#xff1a;https://doi.org/10.1002/imt2.83 还有这个&#xff0c;后面马上介绍&#xff1a;YongxinLiu/EasyAmplicon: E…...

【Python百宝箱】漫游Python数据可视化宇宙:pyspark、dash、streamlit、matplotlib、seaborn全景式导览

Python数据可视化大比拼&#xff1a;从大数据处理到交互式Web应用 前言 在当今数字时代&#xff0c;数据可视化是解释和传达信息的不可或缺的工具之一。本文将深入探讨Python中流行的数据可视化库&#xff0c;从大数据处理到交互式Web应用&#xff0c;为读者提供全面的了解和…...

企业数字档案馆室建设指南

数字化时代&#xff0c;企业数字化转型已经成为当下各行业发展的必然趋势。企业数字化转型不仅仅是IT系统的升级&#xff0c;也包括企业内部各种文件、档案、合同等信息的数字化管理。因此&#xff0c;建设数字档案馆室也变得尤为重要。本篇文章将为您介绍企业数字档案馆室建设…...

JavaScript中处理时间差

ES6版本 function countdown(endTime, includeSeconds true) {// 获取当前时间let now new Date();// 将传入的结束时间字符串转换为日期对象let endDateTime new Date(endTime);// 检查传入的时间字符串是否只包含日期&#xff08;不包含时分秒&#xff09;if (endTime.tr…...

Multidimensional Scaling(MDS多维缩放)算法及其应用

在这篇博客中&#xff0c;我将与大家分享在流形分析领域的一个非常重要的方法&#xff0c;即多维缩放MDS。整体来说&#xff0c;该方法提供了一种将内蕴距离映射到显性欧氏空间的计算&#xff0c;为非刚性形状分析提供了一种解决方案。当初就是因为读了Bronstein的相关工作【1】…...

单片机_RTOS_架构

一. RTOS的概念 // 经典单片机程序 void main() {while (1){喂一口饭();回一个信息();} } ------------------------------------------------------ // RTOS程序 喂饭() {while (1){喂一口饭();} }回信息() {while (1){回一个信息();} }void main() {create_task(喂饭);cr…...

Golang rsa 验证

一下代码用于rsa 签名的验签&#xff0c; 签名可以用其他语言产生。也可以用golang生成。 package mainimport ("crypto""crypto/rsa""crypto/sha256""crypto/x509""encoding/pem""errors""fmt" )fun…...

网络安全威胁——跨站脚本攻击

跨站脚本攻击 1. 定义2. 跨站脚本攻击如何工作3. 跨站脚本攻击类型4. 如何防止跨站脚本攻击 1. 定义 跨站脚本攻击&#xff08;Cross-site Scripting&#xff0c;通常称为XSS&#xff09;&#xff0c;是一种典型的Web程序漏洞利用攻击&#xff0c;在线论坛、博客、留言板等共享…...

Java利用UDP实现简单的双人聊天

一、创建新项目 首先创建一个新的项目&#xff0c;并命名。 二、实现代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; import java.net.*; import java.io.IOException; import java.lang.String; public class liaotian extends JFrame{ pri…...

HBase整合Phoenix

文章目录 一、简介1、Phoenix定义2、Phoenix架构 二、安装Phoenix1、安装 三、Phoenix操作1、Phoenix 数据映射2、Phoenix Shell操作3、Phoenix JDBC操作3.1 胖客户端3.2 瘦客户端 四、Phoenix二级索引1、为什么需要二级索引2、全局索引&#xff08;global index&#xff09;3、…...

C# 委托/事件/lambda

概念 委托 定义委托编译器会自动生成一个类派生自System.MulticastDelegate 这个类包含4个方法&#xff1a;一个构造器、Invoke、BeginInvoke、EndInvoke。 调用委托的时候实际上执行的是 Invoke方法。 MulticastDelegate类有三个重要字段&#xff1a; _target&#xff…...

13款趣味性不错(炫酷)的前端动画特效及源码(预览获取)分享(附源码)

文字激光打印特效 基于canvas实现的动画特效&#xff0c;你既可以设置初始的打印文字也可以在下方输入文字可实现激光字体打印&#xff0c;精简易用。 预览获取 核心代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&q…...

C# 友元程序集

1.友元程序集 使用友元程序集可以将internal成员提供给其他的友元程序集访问。 程序集FriendTest1.dll [assembly:InternalsVisibleTo("FriendTest2")] namespace FriendTest1 {internal class Friend{string name;public string Name > name;public Friend(str…...

CRM系统的数据分析和报表功能对企业重要吗?

竞争日益激烈&#xff0c;企业需要更加高效地管理客户关系&#xff0c;以获取更多的商机。为此&#xff0c;许多企业选择使用CRM系统。在CRM中&#xff0c;数据分析功能扮演着重要的角色。下面就来详细说说&#xff0c;CRM系统数据分析与报表功能对企业来说重要吗&#xff1f; …...

【单体架构事务失效解决方式之___代理对象加锁】

单体架构__用户限买 一个id一单的多线程事务失效问题解决 背景介绍&#xff1a;有一种情况&#xff0c;我们在使用Synchronized的时候出现失效情况。 经过排查&#xff0c;是因为使用了this.当前对象&#xff0c;他现在使用的是目标对象加锁失效&#xff0c;使用代理对象加锁就…...

面试被问到 HTTP和HTTPS的区别有哪些?你该如何回答~

HTTP和HTTPS的区别有哪些&#xff0c;主要从以下几个方面来说&#xff1a; 1.安全性 HTTP和HTTPS是两种不同的协议&#xff0c;它们之间最主要的区别在于安全性。HTTP协议以明文方式发送内容&#xff0c;不提供任何方式的数据加密&#xff0c;容易被攻击者截取信息。 HTTPS则在…...

点评项目——短信登陆模块

2023.12.6 短信登陆如果基于session来实现&#xff0c;会存在session共享问题&#xff1a;多台Tomcat不能共享session存储空间&#xff0c;这会导致当请求切换到不同服务器时出现数据丢失的问题。 早期的解决办法是让session提供一个数据拷贝的功能&#xff0c;即让各个Tomcat的…...

vx小程序怎么制作/seo职业

原标题&#xff1a;win10玩魔兽世界启动失败怎么办&#xff1f;请看过来最近小编在windows10正式版系统启动魔兽世界7.0经典游戏时&#xff0c;能正常输入账号登录战网客户端&#xff0c;也能进入游戏&#xff0c;选择完角色进场景全部loading后&#xff0c;出现所在城镇的图像…...

简述建设网站的步骤6/网站建站公司

光做C了&#xff0c;做完C&#xff0c;就要结束了&#xff0c;看了看D&#xff0c;没看懂那操作啥意思&#xff0c;就扔了。 刚才看了看&#xff0c;突然懂了。。 就是每个人从那堆牌上边拿牌&#xff0c;最少拿一张&#xff0c;最多可以全拿走&#xff0c;然后手里留下最后一张…...

桂林生活网疫情最新消息/搜索引擎关键词优化

blog地址&#xff1a;https://blog.friddle.me/post/frida-js-de-retrofit-si-lu-he-chang-shi/开始博客又搞来搞去。本来准备在知乎上了。不过可以在这里写。然后知乎上再拷贝一份 Retrofit是一个很牛逼的框架/Frida也是。我作为新手。通过hack某个App一周多。也算正式入门了目…...

wordpress主题Tendor/免费浏览外国网站的软件

1.前言 java.util.concurrent.atomic 的包里有AtomicBoolean, AtomicInteger, AtomicLong, AtomicLongArray, AtomicReference等原子类的类&#xff0c;主要用于在高并发环境下的高效程序处理&#xff0c;来帮助我们简化同步处理。 在Java语言中&#xff0c;i和i操作并不是线程…...

广州网站建设广州网络推广公司/百度识图网站

上次给大家介绍了 Python 如何操作 Excel &#xff0c;是不是感觉还挺有趣的&#xff0c;今天为大家再介绍下&#xff0c;用 Python 如何操作 Word &#xff0c;这个可能跟数据处理关系不大&#xff0c;用的也不多&#xff0c;不过可以先了解下都能实现什么功能&#xff0c;以备…...

wordpress 蜘蛛插件/长沙seo顾问

00.如果你期望学习一种对所有项目都适用的方法&#xff0c;那只是一种远离现实的妄想。成为一位有效的项目经理将会是一项挑战你哥哥方面创造性的经历&#xff0c;所以你讲从基本原理开始学习。 01.《PMBOK指南》描述的是过程而非方法论。你或者你的管理&#xff0c;应当定义你…...