当前位置: 首页 > news >正文

LeetCode-面试题 05.02. 二进制数转字符串【数学,字符串,位运算】

LeetCode-面试题 05.02. 二进制数转字符串【数学,字符串,位运算】

  • 题目描述:
  • 解题思路一:简单暴力。小数点后面的二进制,now首先从0.5开始之和每次除以2。然后依次判断当前数是否大于now,是则答案加1。若等于now则可以直接返回。小于则答案加0。其实就是一个不断迭代计算小数的过程。
  • 解题思路二:不断×2,左进一位,依次判断是0还是1。
  • 解题思路三:0

题目描述:

二进制数转字符串。给定一个介于0和1之间的实数(如0.72),类型为double,打印它的二进制表达式。如果该数字无法精确地用32位以内的二进制表示,则打印“ERROR”。

示例1:

输入:0.625
输出:“0.101”

示例2:

输入:0.1
输出:“ERROR”
提示:0.1无法被二进制准确表示

提示:

32位包括输出中的 “0.” 这两位。
题目保证输入用例的小数位数最多只有 6 位

https://leetcode.cn/problems/bianry-number-to-string-lcci/description/

解题思路一:简单暴力。小数点后面的二进制,now首先从0.5开始之和每次除以2。然后依次判断当前数是否大于now,是则答案加1。若等于now则可以直接返回。小于则答案加0。其实就是一个不断迭代计算小数的过程。

class Solution {
public:string printBin(double num) {string ans="0.";double now=0.5;while(num>0){if(num>now){num-=now;ans+="1";}else if(now==num){ans+="1";return ans;}else{ans+="0";}if(now<0.0000001) return "ERROR";//题目保证输入用例的小数位数最多只有 6 位now/=2;         }return "ERROR";}
};

时间复杂度:O(1)//加上剪枝的话最多循环6次
空间复杂度:O©//字符串。

解题思路二:不断×2,左进一位,依次判断是0还是1。

当 num的十进制的小数位数最多只有 6 位时,若 num 能表示为有限位二进制小数,则二进制的小数位数同样至多为 6 位。
证明见传送门!!!

class Solution {
public:string printBin(double num) {string bin = "0.";for (int i = 0; i < 6; ++i) { // 至多循环 6 次num *= 2;if (num < 1)bin += '0';else {bin += '1';if (--num == 0)return bin;}}return "ERROR";}
};

时间复杂度:O(1)//加上剪枝的话最多循环6次
空间复杂度:O(1)//字符串。

解题思路三:0


相关文章:

LeetCode-面试题 05.02. 二进制数转字符串【数学,字符串,位运算】

LeetCode-面试题 05.02. 二进制数转字符串【数学&#xff0c;字符串&#xff0c;位运算】题目描述&#xff1a;解题思路一&#xff1a;简单暴力。小数点后面的二进制&#xff0c;now首先从0.5开始之和每次除以2。然后依次判断当前数是否大于now&#xff0c;是则答案加1。若等于…...

pandas: 三种算法实现递归分析Excel中各列相关性

目录 前言 目的 思路 代码实现 1. 循环遍历整个SDGs列&#xff0c;两两拿到数据 2. 调用pandas库函数直接进行分析 完整源码 运行效果 总结 前言 博主之前刚刚被学弟邀请参与了2023美赛&#xff0c;这也是第一次正式接触数学建模竞赛&#xff0c;现在已经提交等待结果…...

【Python百日进阶-Web开发-Vue3】Day543 - Vue3 商城后台 03:登录页面初建

文章目录 一、创建登录页面 login.vue二、登录页面响应式处理,以适应不同大小的屏幕2.1 element-plus 的layout布局中关于响应式的说明2.2 修改login.vue文件2.2.1 :lg=16 大于1200px 横排 2:12.2.2 :md=12 大于992小于1200px 横排 1:12.2.3 小于992 竖排三、引入Element-plus…...

python画直方图,刻画数据分布

先展示效果 准备一维数据 n 个数据元素计算最大值&#xff0c;最小值、均值、标准差、以及直方图分组 import numpy as np data list() for i in range(640):data.append(np.random.normal(1)) print(data)z np.histogram(data, bins64) print(list(z[0])) ### 对应 x 轴数据…...

几何学小课堂:非欧几何(广义相对论采用黎曼几何作为数学工具)【学数学关键是要学会在什么情况下,知道使用什么工具。】

文章目录 引言I 非欧几何1.1 黎曼几何1.2 共形几何1.3 罗氏几何II 黎曼几何的应用2.1 广义相对论2.2 超弦III 理解不同的几何体系的共存3.1 更扎实的欧氏几何3.2 殊途同归引言 公理有错会得到两种情况: 如果某一条自己设定的新公理和现有的公理相矛盾,那么相应的知识体系就建…...

Ubuntu配置静态IP的方法

Ubuntu配置静态IP的方法前言一、查看虚机分配的网卡IP二、查看网卡的网关IP三、配置静态IP1.配置IPv4地址2.执行netplan apply使改动生效3.配置的网卡未生效&#xff0c;修改50-cloud-init.yaml文件解决4.测试vlan网络通信总结前言 Ubuntu18.04 欧拉环境 vlan网络支持ipv6场景…...

90%的人都不算会爬虫,这才是真正的技术,从0到高手的进阶

很多人以为学会了urlib模块和xpath等几个解析库&#xff0c;学了Selenium就会算精通爬虫了&#xff0c;但到外面想靠爬虫技术接点私活&#xff0c;才发现寸步难行。 龙叔我做了近20年的程序员&#xff0c;今天就告诉你&#xff0c;真正的爬虫高手应该学哪些东西&#xff0c;就…...

排序之损失函数List-wise loss(系列3)

排序系列篇&#xff1a; 排序之指标集锦(系列1)原创 排序之损失函数pair-wise loss(系列2)排序之损失函数List-wise loss(系列3) 最早的关于list-wise的文章发表在Learning to Rank: From Pairwise Approach to Listwise Approach中&#xff0c;后面陆陆续续出了各种变形&#…...

js对象和原型、原型链的关系

JS的原型、原型链一直是比较难理解的内容&#xff0c;不少初学者甚至有一定经验的老鸟都不一定能完全说清楚&#xff0c;更多的"很可能"是一知半解&#xff0c;而这部分内容又是JS的核心内容&#xff0c;想要技术进阶的话肯定不能对这个概念一知半解&#xff0c;碰到…...

【SpringBoot高级篇】SpringBoot集成Sharding-JDBC分库分表

【SpringBoot高级篇】SpringBoot集成Sharding-JDBC分库分表Apache ShardingSphere分库分表分库分表的方式垂直切分垂直分表垂直分库水平切分水平分库水平分表分库分表带来的问题分库分表中间件Sharding-JDBCsharding-jdbc实现水平分表sharding-jdbc实现水平分库sharding-jdbc实…...

Shell特殊字符

shell语言&#xff0c;一些字符是有特殊意义的。 根据作用分为几种特殊符号 一、空白 shell调用函数&#xff0c;不像c语言那样用把参数放到括号里&#xff0c;用逗号分隔。而是用空格作为参数之间&#xff0c;参数与函数名之间的分隔符。 换行符也是特殊字符。换行符用作一条命…...

【计算机二级python】综合题目

计算机二级python真题 文章目录计算机二级python真题一、德国工业战略规划二、德国工业战略规划 第一问三、德国工业战略规划 第二问一、德国工业战略规划 描述:在右侧答题模板中修改代码&#xff0c;删除代码中的横线&#xff0c;填写代码&#xff0c;完成考试答案。‪‬‪‬…...

字节直播leader面

设计评论系统&#xff08;缓存怎么做&#xff09; mysql是否有主从延迟&#xff0c;如何解决 mysql有主从延迟 主从延迟主要因为mysql主从同步的机制&#xff0c;mysql有三种同步机制 同步复制&#xff1a;事务线程等待所有从库复制成功响应异步复制&#xff1a;事务不等待…...

PIC 单片机的时钟

注意&#xff1a;本文的内容无法保证绝对精确&#xff0c;后续可能会做改动&#xff0c;只是自己的笔记。这里的资料均源自数据手册本身。PIC18系列单片机的参考时钟可以选择三个基础时钟源&#xff1a;Primary Clock, OSC1 or OSC2,Secondary Clock,Inner clock.时钟源分为两个…...

【数据结构】关于二叉树你所应该知道的数学秘密

目录 1.什么是二叉树&#xff08;可以跳过 目录跳转&#xff09; 2.特殊的二叉树&#xff08;满二叉树/完全二叉树&#xff09; 2.1 基础知识 2.2 满二叉树 2.3 完全二叉树 3.二叉树的数学奥秘&#xff08;主体&#xff09; 3.1 高度与节点个数 3.2* 度 4.运用二叉树的…...

哈希表题目:猜数字游戏

文章目录题目标题和出处难度题目描述要求示例数据范围解法一思路和算法代码复杂度分析解法二思路和算法代码复杂度分析题目 标题和出处 标题&#xff1a;猜数字游戏 出处&#xff1a;299. 猜数字游戏 难度 4 级 题目描述 要求 你在和朋友一起玩猜数字&#xff08;Bulls…...

项目请求地址自动加上了本地ip的解决方式

一般情况下来说都是一些粗心大意的问题导致的 场景一&#xff1a;少加了/ 场景二&#xff1a;前后多加了空格 场景三&#xff1a;拼接地址错误![...

Vue3 企业级项目实战:项目须知与课程约定

本节内容很重要&#xff0c;希望大家能够耐心看完。 Vue3 企业级项目实战 - 程序员十三 - 掘金小册Vue3 Element Plus Spring Boot 企业级项目开发&#xff0c;升职加薪&#xff0c;快人一步。。「Vue3 企业级项目实战」由程序员十三撰写&#xff0c;2744人购买https://s.ju…...

传导EMI抑制-Π型滤波器设计

1 传导电磁干扰简介 在开关电源中&#xff0c;开关管周期性的通断会产生周期性的电流突变&#xff08;di/dt&#xff09;和电压突变(dv/dt)&#xff0c;周期性的电流变化和电压变化则会导致电磁干扰的产生。 图1所示为Buck电路的电流变化&#xff0c;在Buck电路中上管电流和下…...

如何在excel中创建斐波那契数列

斐波那契数列&#xff08;Fibonacci sequence&#xff09;&#xff0c;又称黄金分割数列&#xff0c;因数学家莱昂纳多斐波那契&#xff08;Leonardo Fibonacci&#xff09;以兔子繁殖为例子而引入&#xff0c;故又称为“兔子数列”&#xff0c;指的是这样一个数列&#xff1a;…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...