问题三十四:傅立叶变换——高通滤波
高通滤波器是一种可以通过去除图像低频信息来增强高频信息的滤波器。在图像处理中,高通滤波器常常用于去除模糊或平滑效果,以及增强边缘或细节。在本篇回答中,我们将使用Python和OpenCV实现高通滤波器。
Step 1:加载图像并进行傅立叶变换
首先,我们需要加载图像并将其转换为灰度图像。然后,我们使用numpy的fft2函数进行二维傅立叶变换,并使用numpy的fftshift函数将频谱中心移到图像中心。最后,我们使用numpy的log函数计算幅度谱的对数值,并使用opencv的normalize函数将其缩放到0到255之间的整数范围内。
以下是完整的Python代码:
import numpy as np
import cv2
import matplotlib.pyplot as plt# 加载图像并将其转换为灰度图像
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 进行二维傅立叶变换
dft = np.fft.fft2(gray)
dft_shift = np.fft.fftshift(dft)# 计算幅度谱并进行对数变换
magnitude_spectrum = 20 * np.log(np.abs(dft_shift))# 将幅度谱缩放到0到255的整数范围内
magnitude_spectrum = cv2.normalize(magnitude_spectrum, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
解释:
- Step 1.1:我们使用
cv2.imread
函数加载图像,并使用cv2.cvtColor
函数将其转换为灰度图像。 - Step 1.2:我们使用
np.fft.fft2
函数对灰度图像进行二维傅立叶变换。 - Step 1.3:我们使用
np.fft.fftshift
函数将频谱中心移到图像中心。 - Step 1.4:我们使用
np.abs
函数计算频谱的幅度,并使用np.log
函数进行对数变换。 - Step 1.5:我们使用
cv2.normalize
函数将幅度谱缩放到0到255之间的整数范围内。
Step 2:设计高通滤波器并应用
在本例中,我们将使用巴特沃斯高通滤波器来过滤频谱。巴特沃斯高通滤波器可以被描述为一个阶数和半径的函数,我们需要选择这些参数来调整滤波器的性能。阶数越高,滤波器的陡峭程度就越高,但会导致图像失真。半径越小,滤波器去除的低频信息就越多。
我们将使用cv2.getOptimalDFTSize
函数获取最佳的离散傅里叶变换尺寸,以便在后续计算中避免频谱的失真。接下来,我们将使用cv2.filter2D
函数将高通滤波器应用于频谱图像,并将其保存为变量filtered_spectrum
。
以下是完整的Python代码:
# 设计高通滤波器并应用
rows, cols = gray.shape
crow, ccol = rows // 2, cols // 2
R = 60
n = 2
D_0 = R / ((rows ** 2 + cols ** 2) ** 0.5)# 创建巴特沃斯高通滤波器
butterworth_highpass = np.zeros((rows, cols), dtype=np.float32)
for i in range(rows):for j in range(cols):distance = ((i - crow) ** 2 + (j - ccol) ** 2) ** 0.5butterworth_highpass[i, j] = 1 / (1 + (distance / D_0) ** (2 * n))# 将高通滤波器应用于频谱图像
filtered_spectrum = butterworth_highpass * dft_shift
filtered_spectrum = np.fft.ifftshift(filtered_spectrum)
解释:
- Step 2.1:我们获取图像的行和列数,并计算其中心坐标。
- Step 2.2:我们选择半径
R
和阶数n
作为巴特沃斯高通滤波器的参数,并计算截止频率D_0
。 - Step 2.3:我们使用两个嵌套的
for
循环来创建一个与输入图像大小相同的数组butterworth_highpass
,并为每个像素计算对应的高通滤波器值。 - Step 2.4:我们使用
np.fft.ifftshift
函数将频谱中心移回原来的位置。
Step 3:进行傅立叶逆变换并显示结果
最后一步是将处理后的频谱图像进行逆变换,并将结果保存为变量filtered_image
。我们使用opencv的normalize函数将结果缩放到0到255之间的整数范围内,并使用matplotlib的imshow函数显示结果。
# 进行傅立叶逆变换并显示结果
filtered_image = cv2.idft(filtered_spectrum)
filtered_image = cv2.magnitude(filtered_image[:, :, 0], filtered_image[:, :, 1])
filtered_image = cv2.normalize(filtered_image, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)plt.imshow(filtered_image, cmap='gray')
plt.title('High Pass Filtered Image')
plt.show()
解释:
- Step 3.1:我们使用
cv2.idft
函数将经过高通滤波器处理的频谱进行傅里叶逆变换,以便将其转换回图像域。 - Step 3.2:我们使用
cv2.magnitude
函数计算逆变换结果的幅值,并保存在变量filtered_image
中。 - Step 3.3:我们使用
cv2.normalize
函数将结果缩放到0到255之间的整数范围内,并将其转换为8位无符号整数。 - Step 3.4:我们使用
matplotlib.pyplot.imshow
函数显示结果,并添加一个标题。
完整的Python代码如下:
import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE)# 进行离散傅里叶变换
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 设计高通滤波器并应用
rows, cols = img.shape
crow, ccol = rows // 2, cols // 2
R = 60
n = 2
D_0 = R / ((rows ** 2 + cols ** 2) ** 0.5)# 创建巴特沃斯高通滤波器
butterworth_highpass = np.zeros((rows, cols), dtype=np.float32)
for i in range(rows):for j in range(cols):distance = ((i - crow) ** 2 + (j - ccol) ** 2) ** 0.5butterworth_highpass[i, j] = 1 / (1 + (distance / D_0) ** (2 * n))# 将高通滤波器应用于频谱图像
filtered_spectrum = butterworth_highpass * dft_shift
filtered_spectrum = np.fft.ifftshift(filtered_spectrum)# 进行傅立叶逆变换并显示结果
filtered_image = cv2.idft(filtered_spectrum)
filtered_image = cv2.magnitude(filtered_image[:, :, 0], filtered_image[:, :, 1])
filtered_image = cv2.normalize(filtered_image, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)plt.imshow(filtered_image, cmap='gray')
plt.title('High Pass Filtered Image')
plt.show()
这个程序将在窗口中显示过滤后的图像,并保存为当前目录中的文件。
相关文章:
问题三十四:傅立叶变换——高通滤波
高通滤波器是一种可以通过去除图像低频信息来增强高频信息的滤波器。在图像处理中,高通滤波器常常用于去除模糊或平滑效果,以及增强边缘或细节。在本篇回答中,我们将使用Python和OpenCV实现高通滤波器。 Step 1:加载图像并进行傅…...
flink 键控状态(keyed state)
github开源项目flink-note的笔记。本博客的实现代码都写在项目的flink-state/src/main/java/state/keyed/KeyedStateDemo.java文件中。 项目github地址: github 1. flink键控状态 flink键控状态是作用与flink KeyedStream上的,也就是说需要将DataStream先进行keyby之后才能使…...
【ChatGPT】sqlachmey 多表连表查询语句
感受下科技带来的魅力,这篇文章是通过ChatGPT自动生成的,不得不说技术强大!!! 在SQLAlchemy中进行多表连接查询可以使用join()方法或join()函数,具体用法如下: join()方法 join()方法可以在SQLAlchemy ORM中的查询中使用。假设…...
win11 系统登录问题,PIN 设置问题
我的电脑配置是华为MateBook X Pro 12,i7处理器,16G,1T,win11 系统通过微软账户登录,下午一直登录不进去,网络能连外网,分析应该是连微软服务器不行。连续登录几十次,偶尔可能有一次…...
数据结构六大排序
1.插入排序 思路: 从第一个元素开始认为是有序的,去一个元素tem从有序序列从后往前扫描,如果该元素大于tem,将该元素一刀下一位,循环步骤3知道找到有序序列中小于等于的元素将tem插入到该元素后,如果已排序…...
快速生成QR码的方法:教你变成QR Code Master
目录 简介: 具体实现步骤: 一、可以使用Python中的qrcode和tkinter模块来生成QR码。以下是一个简单的例子,演示如何在Tkinter窗口中获取用户输入并使用qrcode生成QR码。 1)首先需要安装qrcode模块,可以使用以下命令在终端或命令…...
tensorflow1.14.0安装教程--保姆级
//方法不止一种,下面仅展示一种。 注:本人电脑为win11,anaconda的python版本为3.9,但tensorflow需要python版本为3.7,所以下面主要阐述将python版本改为3.7后的安装过程以及常遇到的问题。 1.首先电脑安装好anaconda…...
AcWing算法提高课-3.1.3香甜的黄油
宣传一下算法提高课整理 <— CSDN个人主页:更好的阅读体验 <— 题目传送门点这里 题目描述 农夫John发现了做出全威斯康辛州最甜的黄油的方法:糖。 把糖放在一片牧场上,他知道 N 只奶牛会过来舔它,这样就能做出能卖好价…...
私库搭建1:Nexus 安装 Docker 版
本文内容以语雀为准 文档 https://hub.docker.com/r/sonatype/nexus3Docker 安装:https://www.yuque.com/xuxiaowei-com-cn/gitlab-k8s/docker-install 安装 创建文件夹 由于 Nexus 的数据可能会很大,比如:作为 Docker、Maven 私库时&…...
LeetCode-面试题 05.02. 二进制数转字符串【数学,字符串,位运算】
LeetCode-面试题 05.02. 二进制数转字符串【数学,字符串,位运算】题目描述:解题思路一:简单暴力。小数点后面的二进制,now首先从0.5开始之和每次除以2。然后依次判断当前数是否大于now,是则答案加1。若等于…...
pandas: 三种算法实现递归分析Excel中各列相关性
目录 前言 目的 思路 代码实现 1. 循环遍历整个SDGs列,两两拿到数据 2. 调用pandas库函数直接进行分析 完整源码 运行效果 总结 前言 博主之前刚刚被学弟邀请参与了2023美赛,这也是第一次正式接触数学建模竞赛,现在已经提交等待结果…...
【Python百日进阶-Web开发-Vue3】Day543 - Vue3 商城后台 03:登录页面初建
文章目录 一、创建登录页面 login.vue二、登录页面响应式处理,以适应不同大小的屏幕2.1 element-plus 的layout布局中关于响应式的说明2.2 修改login.vue文件2.2.1 :lg=16 大于1200px 横排 2:12.2.2 :md=12 大于992小于1200px 横排 1:12.2.3 小于992 竖排三、引入Element-plus…...
python画直方图,刻画数据分布
先展示效果 准备一维数据 n 个数据元素计算最大值,最小值、均值、标准差、以及直方图分组 import numpy as np data list() for i in range(640):data.append(np.random.normal(1)) print(data)z np.histogram(data, bins64) print(list(z[0])) ### 对应 x 轴数据…...
几何学小课堂:非欧几何(广义相对论采用黎曼几何作为数学工具)【学数学关键是要学会在什么情况下,知道使用什么工具。】
文章目录 引言I 非欧几何1.1 黎曼几何1.2 共形几何1.3 罗氏几何II 黎曼几何的应用2.1 广义相对论2.2 超弦III 理解不同的几何体系的共存3.1 更扎实的欧氏几何3.2 殊途同归引言 公理有错会得到两种情况: 如果某一条自己设定的新公理和现有的公理相矛盾,那么相应的知识体系就建…...
Ubuntu配置静态IP的方法
Ubuntu配置静态IP的方法前言一、查看虚机分配的网卡IP二、查看网卡的网关IP三、配置静态IP1.配置IPv4地址2.执行netplan apply使改动生效3.配置的网卡未生效,修改50-cloud-init.yaml文件解决4.测试vlan网络通信总结前言 Ubuntu18.04 欧拉环境 vlan网络支持ipv6场景…...
90%的人都不算会爬虫,这才是真正的技术,从0到高手的进阶
很多人以为学会了urlib模块和xpath等几个解析库,学了Selenium就会算精通爬虫了,但到外面想靠爬虫技术接点私活,才发现寸步难行。 龙叔我做了近20年的程序员,今天就告诉你,真正的爬虫高手应该学哪些东西,就…...
排序之损失函数List-wise loss(系列3)
排序系列篇: 排序之指标集锦(系列1)原创 排序之损失函数pair-wise loss(系列2)排序之损失函数List-wise loss(系列3) 最早的关于list-wise的文章发表在Learning to Rank: From Pairwise Approach to Listwise Approach中,后面陆陆续续出了各种变形&#…...
js对象和原型、原型链的关系
JS的原型、原型链一直是比较难理解的内容,不少初学者甚至有一定经验的老鸟都不一定能完全说清楚,更多的"很可能"是一知半解,而这部分内容又是JS的核心内容,想要技术进阶的话肯定不能对这个概念一知半解,碰到…...
【SpringBoot高级篇】SpringBoot集成Sharding-JDBC分库分表
【SpringBoot高级篇】SpringBoot集成Sharding-JDBC分库分表Apache ShardingSphere分库分表分库分表的方式垂直切分垂直分表垂直分库水平切分水平分库水平分表分库分表带来的问题分库分表中间件Sharding-JDBCsharding-jdbc实现水平分表sharding-jdbc实现水平分库sharding-jdbc实…...
Shell特殊字符
shell语言,一些字符是有特殊意义的。 根据作用分为几种特殊符号 一、空白 shell调用函数,不像c语言那样用把参数放到括号里,用逗号分隔。而是用空格作为参数之间,参数与函数名之间的分隔符。 换行符也是特殊字符。换行符用作一条命…...
【计算机二级python】综合题目
计算机二级python真题 文章目录计算机二级python真题一、德国工业战略规划二、德国工业战略规划 第一问三、德国工业战略规划 第二问一、德国工业战略规划 描述:在右侧答题模板中修改代码,删除代码中的横线,填写代码,完成考试答案。…...
字节直播leader面
设计评论系统(缓存怎么做) mysql是否有主从延迟,如何解决 mysql有主从延迟 主从延迟主要因为mysql主从同步的机制,mysql有三种同步机制 同步复制:事务线程等待所有从库复制成功响应异步复制:事务不等待…...
PIC 单片机的时钟
注意:本文的内容无法保证绝对精确,后续可能会做改动,只是自己的笔记。这里的资料均源自数据手册本身。PIC18系列单片机的参考时钟可以选择三个基础时钟源:Primary Clock, OSC1 or OSC2,Secondary Clock,Inner clock.时钟源分为两个…...
【数据结构】关于二叉树你所应该知道的数学秘密
目录 1.什么是二叉树(可以跳过 目录跳转) 2.特殊的二叉树(满二叉树/完全二叉树) 2.1 基础知识 2.2 满二叉树 2.3 完全二叉树 3.二叉树的数学奥秘(主体) 3.1 高度与节点个数 3.2* 度 4.运用二叉树的…...
哈希表题目:猜数字游戏
文章目录题目标题和出处难度题目描述要求示例数据范围解法一思路和算法代码复杂度分析解法二思路和算法代码复杂度分析题目 标题和出处 标题:猜数字游戏 出处:299. 猜数字游戏 难度 4 级 题目描述 要求 你在和朋友一起玩猜数字(Bulls…...
项目请求地址自动加上了本地ip的解决方式
一般情况下来说都是一些粗心大意的问题导致的 场景一:少加了/ 场景二:前后多加了空格 场景三:拼接地址错误![...
Vue3 企业级项目实战:项目须知与课程约定
本节内容很重要,希望大家能够耐心看完。 Vue3 企业级项目实战 - 程序员十三 - 掘金小册Vue3 Element Plus Spring Boot 企业级项目开发,升职加薪,快人一步。。「Vue3 企业级项目实战」由程序员十三撰写,2744人购买https://s.ju…...
传导EMI抑制-Π型滤波器设计
1 传导电磁干扰简介 在开关电源中,开关管周期性的通断会产生周期性的电流突变(di/dt)和电压突变(dv/dt),周期性的电流变化和电压变化则会导致电磁干扰的产生。 图1所示为Buck电路的电流变化,在Buck电路中上管电流和下…...
如何在excel中创建斐波那契数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:…...
遮挡检测--基于角度的遮挡检测方法
文章目录1基于角度的遮挡检测方法2遮挡检测遍历方法2.1方法1--自适应径向扫描方法2.2方法2--螺旋扫描法参考1基于角度的遮挡检测方法 在基于角度的方法中,通过依次分析DSM中沿径向方向的投影光线的角度来识别遮挡。定义α\alphaα角:DSM三维点与相机中心…...
wordpress电影主题公园/网络营销活动策划方案
1、被连接件接合面设计要注意的问题1)接合面应有合理的形状和足够大的尺寸。为使两零件可靠的连接起来,它们的接合面必须紧密贴合。因此两零件的接合面形状应简单,容易得到高精度和紧密的配合,最常见的接合面是平面和圆柱面。图1a中两个零件用…...
制作网站软件都在什么公司/国内优秀个人网站欣赏
本章提出一种基于经验模态分解的血管内膜中层厚度测量的方法并,它涉及一种基于希尔伯特黄变换的图像特征提取方法。它解决了当前有些图像特征提取方法无法分离特征层以改善提取精度的问题。与之前的方法相比具有精度更高的优点。算法结构如下图所示: 给我…...
为什么会有人攻击我用织梦做的网站/网站友链交换平台
<script>document.write("<script typetext/javascript src//site.com/js.js?v" Date.now() "><\/script>");</script> 使用了网友的上述方法之后,导致了 layui的 折叠面板 异常无法点击 layui-collapse 排查了3…...
网站策划书格式/全网品牌推广
Elasticsearch.安装(单节点) 环境Linux 7.x jdk 1.8 elasticsearch 5.x 环境目录结构(根目录多了两个文件夹): /resources /** 存放下载的文件 **/ /u01/app /** 安装elasticsearch的目录. **/ 在linux的终端执行指令: …...
wordpress的网站怎样添加地图坐标/广州营销型网站
MappedByteBuffer是一种效率低于零拷贝,但高于传统IO的IO操作。 算是一种弥补transferTo零拷贝时无法中间处理源数据的手段。。效率低于零拷贝,但高于使用普通堆外内存(DirectByteBuffer) 正文: 其实MappedByteBuff…...
哪个网站可以代做试题/新闻头条最新消息今天发布
process.cwd() 是当前执行node命令时候的文件夹地址 ——工作目录,保证了文件在不同的目录下执行时,路径始终不变__dirname 是被执行的js 文件的地址 ——文件所在目录 Nodejs官方文档上的解释: > process.cwd(): The process.cwd() metho…...