当前位置: 首页 > news >正文

LLM微调(四)| 微调Llama 2实现Text-to-SQL,并使用LlamaIndex在数据库上进行推理

        Llama 2是开源LLM发展的一个巨大里程碑。最大模型及其经过微调的变体位居Hugging Face Open LLM排行榜(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)前列。多个基准测试表明,就性能而言,它正在接近GPT-3.5(在某些情况下甚至超过它)。所有这些都意味着,对于从RAG系统到Agent的复杂LLM应用程序,开源LLM是一种越来越可行和可靠的选择。

一、Llama-2–7B不擅长从文本到SQL

       最小的Llama 2模型(7B参数)有一个缺点是它不太擅长生成SQL,因此它不适用于结构化分析示例。例如,我们尝试在给定以下提示模板的情况下提示Llama 2生成正确的SQL语句:

You are a powerful text-to-SQL model. Your job is to answer questions about a database. You are given a question and context regarding one or more tables. You must output the SQL query that answers the question.### Input:{input}### Context:{context}### Response:

         在这里,我们使用sqlcreatecontext数据集(https://huggingface.co/datasets/b-mc2/sql-create-context)的一个示例来测试一下效果:

input: In 1981 which team picked overall 148?context: CREATE TABLE table_name_8 (team VARCHAR, year VARCHAR, overall_pick VARCHAR)

         同时,这里是生成的输出与正确输出的对比:

Generated output: SELECT * FROM `table_name_8` WHERE '1980' = YEAR AND TEAM = "Boston Celtics" ORDER BY OVERALL_PICK DESC LIMIT 1;Correct output: SELECT team FROM table_name_8 WHERE year = 1981 AND overall_pick = "148"

       这显然并不理想。与ChatGPT和GPT-4不同,原始的Llama 2不能生成期望的的格式和正确的SQL

      这正是微调的作用所在——如果有一个合适的文本到SQL数据的语料库,我们可以教Llama 2更好地从自然语言生成SQL输出。微调有不同的方法,可以更新模型的所有参数(比如:全量微调),也可以冻结大模型参数仅微调附加参数(比如:LoRA)。

二、微调Llama-2–7B,使其可以从文本生成SQL

       接下来,我们将展示如何在文本到SQL数据集上微调Llama 2,然后使用LlamaIndex的功能对任何SQL数据库进行结构化分析。

准备工作:

微调数据集:来自Hugging Face的b-mc2/sql-create-context(https://huggingface.co/datasets/b-mc2/sql-create-context)

base模型:OpenLLaMa 的open_lama_7b_v2(https://github.com/openlm-research/open_llama)

步骤1:加载微调LLaMa的训练数据

PS:1)以下代码来自doppel-bot:https://github.com/modal-labs/doppel-bot;2)许多Python代码都包含在src目录中;3)需要设置一个Modal帐户,并生成token。

!pip install -r requirements.txt

       首先,我们使用Modal加载b-mc2/sql-create-context数据集,并将其格式化为.jsonl文件。

modal run src.load_data_sql --data-dir "data_sql"

结果如下所示:

# Modal stubs allow our function to run remotely@stub.function(    retries=Retries(        max_retries=3,        initial_delay=5.0,        backoff_coefficient=2.0,    ),    timeout=60 * 60 * 2,    network_file_systems={VOL_MOUNT_PATH.as_posix(): output_vol},    cloud="gcp",)def load_data_sql(data_dir: str = "data_sql"):    from datasets import load_dataset    dataset = load_dataset("b-mc2/sql-create-context")    dataset_splits = {"train": dataset["train"]}    out_path = get_data_path(data_dir)    out_path.parent.mkdir(parents=True, exist_ok=True)    for key, ds in dataset_splits.items():        with open(out_path, "w") as f:            for item in ds:                newitem = {                    "input": item["question"],                    "context": item["context"],                    "output": item["answer"],                }                f.write(json.dumps(newitem) + "\n")

步骤2:运行微调脚本

在微调数据集微调llama2模型,代码如下:

modal run src.finetune_sql --data-dir "data_sql" --model-dir "model_sql"

微调脚本会执行以下步骤:

将数据集拆分为训练和验证拆分

train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)

       将每个拆分为元组的格式(输入Prompt、标签):输入query和上下文被格式化为输入Prompt,然后对输入Prompt和标签进行 tokenize,模型采用自回归的方法预测下一个token来进行训练。

def generate_and_tokenize_prompt(data_point):  full_prompt = generate_prompt_sql(      data_point["input"],      data_point["context"],      data_point["output"],  )  tokenized_full_prompt = tokenize(full_prompt)  if not train_on_inputs:      raise NotImplementedError("not implemented yet")  return tokenized_full_prompt

PS:输入Prompt与开始测试llama2的格式完全相同。

       运行微调脚本时,模型将保存在model_dir指定的远程云目录中(如果未指定,则设置为默认值)。

步骤3:评估微调后模型

       该模型已经进行了微调,可以从云端提供服务。下面我们使用b-mc2/sql-create-context中的示例数据进行一些基本评估,比较微调后模型与原始Llama 2模型的性能。

modal run src.eval_sql::main

结果表明,微调后的模型有了巨大的改进:

Input 1: {'input': 'Which region (year) has Abigail at number 7, Sophia at number 1 and Aaliyah at number 5?', 'context': 'CREATE TABLE table_name_12 (region__year_ VARCHAR, no_5 VARCHAR, no_7 VARCHAR, no_1 VARCHAR)', 'output': 'SELECT region__year_ FROM table_name_12 WHERE no_7 = "abigail" AND no_1 = "sophia" ANDno_5 = "aaliyah"'}Output 1 (finetuned model): SELECT region__year_ FROM table_name_12 WHERE no_7 = "abigail" AND no_1 = "aaliyah" AND no_5 = "sophia"Output 1 (base model): SELECT * FROM table_name_12 WHERE region__year = '2018' AND no_5 = 'Abigail' AND no_7 = 'Sophia' AND no_1 = 'Aaliyah';Input 2: {'input': 'Name the result/games for 54741', 'context': 'CREATE TABLE table_21436373_11 (result_games VARCHAR, attendance VARCHAR)', 'output': 'SELECT result_games FROM table_21436373_11 WHERE attendance = 54741'}Output 2 (finetuned model): SELECT result_games FROM table_21436373_11 WHERE attendance = "54741"Output 2 (base model): SELECT * FROM table_21436373_11 WHERE result_games = 'name' AND attendance > 0;

步骤4:将微调模型与LlamaIndex集成

       我们现在可以在LlamaIndex中使用这个模型,在任何数据库上进行文本到SQL。

       我们首先定义一个测试SQL数据库,然后可以使用该数据库来测试模型的推理能力。

       我们创建了一个玩具city_stats表,其中包含城市名称、人口和国家信息,并用几个示例城市填充它。

db_file = "cities.db"engine = create_engine(f"sqlite:///{db_file}")metadata_obj = MetaData()# create city SQL tabletable_name = "city_stats"city_stats_table = Table(    table_name,    metadata_obj,    Column("city_name", String(16), primary_key=True),    Column("population", Integer),    Column("country", String(16), nullable=False),)metadata_obj.create_all(engine)

这存储在cities.db文件中。

     然后,我们可以使用Modal将微调后的模型和该数据库文件加载到LlamaIndex中的NLSQLTableQueryEngine中——该查询引擎允许用户轻松地开始在给定的数据库上执行文本到SQL。

modal run src.inference_sql_llamaindex::main --query "Which city has the highest population?" --sqlite-file-path "nbs/cities.db" --model-dir "model_sql" --use-finetuned-model True

我们得到如下回复:

SQL Query: SELECT MAX(population) FROM city_stats WHERE country = "United States"Response: [(2679000,)]

三、结论

        本文提供了一种非常高级的方法来开始微调生成SQL语句的Llama 2模型,并展示了如何使用LlamaIndex将其端到端插入到文本到SQL工作流中。

参考文献:

[1] https://blog.llamaindex.ai/easily-finetune-llama-2-for-your-text-to-sql-applications-ecd53640e10d

[2] https://github.com/run-llama/modal_finetune_sql

[3] https://github.com/run-llama/modal_finetune_sql/blob/main/tutorial.ipynb

相关文章:

LLM微调(四)| 微调Llama 2实现Text-to-SQL,并使用LlamaIndex在数据库上进行推理

Llama 2是开源LLM发展的一个巨大里程碑。最大模型及其经过微调的变体位居Hugging Face Open LLM排行榜(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)前列。多个基准测试表明,就性能而言,它正在接近GPT-3.5…...

柔性数组(结构体成员)

目录 前言: 柔性数组: 给柔性数组分配空间: 调整柔性数组大小: 柔性数组的好处: 前言: 柔性数组?可能你从未听说,但是确实有这个概念。听名字,好像就是柔软的数…...

C#合并多个Word文档(微软官方免费openxml接口)

g /// <summary>/// 合并多个word文档&#xff08;合并到第一文件&#xff09;/// </summary>/// <param name"as_word_paths">word文档完整路径</param>/// <param name"breakNewPage">true(默认值)&#xff0c;合并下一个…...

MySQL 5.7依赖的软件包和下载地址

​​​​​​​yum install ncurses-devel openssl openssl-devel gcc gcc-c ncurses ncurses-devel bison make -y mysql下载地址 下载地址...

图论 | 网络流的基本概念

文章目录 流网路残留网络增广路径割最大流最小割定理最大流Edmonds-Karp 算法算法步骤程序代码时间复杂度 流网路 流网络&#xff1a; G ( V , E ) G (V, E) G(V,E) 有向图&#xff0c;不考虑反向边s&#xff1a;源点t&#xff1a;汇点 c ( u , v ) c(u, v) c(u,v)&#xff…...

【音视频 | AAC】AAC音频编码详解

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

redis基本用法学习(C#调用NRedisStack操作redis)

redis官网文档中推荐C#中使用NRedisStack包连接并操作redis&#xff0c;本文学习C#调用NRedisStack操作redis的基本方式。   新建Winform项目&#xff0c;在Nuget包管理器中搜索并安装NRedisStack包&#xff0c;如下图所示&#xff1a; 主要调用StackExchange.Redis命名空间下…...

[CVPR 2023:3D Gaussian Splatting:实时的神经场渲染]

文章目录 前言小结 原文地址&#xff1a;https://blog.csdn.net/qq_45752541/article/details/132854115 前言 mesh 和点是最常见的3D场景表示&#xff0c;因为它们是显式的&#xff0c;非常适合于快速的基于GPU/CUDA的栅格化。相比之下&#xff0c;最近的神经辐射场&#xf…...

【SpringBoot快速入门】(4)SpringBoot项目案例代码示例

目录 1 创建工程3 配置文件4 静态资源 之前我们已经学习的Spring、SpringMVC、Mabatis、Maven&#xff0c;详细讲解了Spring、SpringMVC、Mabatis整合SSM的方案和案例&#xff0c;上一节我们学习了SpringBoot的开发步骤、工程构建方法以及工程的快速启动&#xff0c;从这一节开…...

Linux服务器 部署飞书信息发送服务

项目介绍&#xff1a; 飞书信息发送服务是指将飞书信息发送服务部署到一个Linux服务器上。飞书是一款企业级的即时通讯和协作工具&#xff0c;支持发送消息给飞书的功能。通过部署飞书信息发送服务&#xff0c;可以方便内网发送信息给外网飞书。 项目代码结构展示&#xff1a; …...

用C#也能做机器学习?

前言✨ 说到机器学习&#xff0c;大家可能都不陌生&#xff0c;但是用C#来做机器学习&#xff0c;可能很多人还第一次听说。其实在C#中基于ML.NET也是可以做机器学习的&#xff0c;这种方式比较适合.NET程序员在项目中集成机器学习模型&#xff0c;不太适合专门学习机器学习&a…...

Python PDF格式转PPT格式

要将PDF文件转换为PPT&#xff0c;我实在python3.9 环境下转成功的&#xff0c;python3.11不行。 需要 pip install PyMuPDF代码说话 # -*- coding: utf-8 -*-""" author: 赫凯 software: PyCharm file: xxx.py time: 2023/12/21 11:20 """im…...

搭建知识付费平台?明理信息科技为你提供全程解决方案

明理信息科技saas知识付费平台 在当今数字化时代&#xff0c;知识付费已经成为一种趋势&#xff0c;越来越多的人愿意为有价值的知识付费。然而&#xff0c;公共知识付费平台虽然内容丰富&#xff0c;但难以满足个人或企业个性化的需求和品牌打造。同时&#xff0c;开发和维护…...

漫谈UNIX、Linux、UNIX-Like

漫谈UNIX、Linux、UNIX-Like 使用了这么多年Redhat、Ubuntu等Linux、Windows、Solaris操作系统&#xff0c;你是否对UNIX、Unix-Like&#xff08;类UNIX&#xff09;还是不太清楚&#xff1f;我以前一直认为Unix-Like就等于Linux。其实&#xff0c;由UNIX派生出来而没有取得UN…...

Netty Review - Netty与Protostuff:打造高效的网络通信

文章目录 概念PrePomServer & ClientProtostuffUtil 解读测试小结 概念 Pre 每日一博 - Protobuf vs. Protostuff&#xff1a;性能、易用性和适用场景分析 Pom <dependency><groupId>com.dyuproject.protostuff</groupId><artifactId>protostuff-…...

在ClickHouse数据库中启用预测功能

在这篇博文中&#xff0c;我们将介绍如何将机器学习支持的预测功能与 ClickHouse 数据库集成。ClickHouse 是一个快速、开源、面向列的 SQL 数据库&#xff0c;对于数据分析和实时分析非常有用。该项目由 ClickHouse&#xff0c; Inc. 维护和支持。我们将探索它在需要数据准备以…...

目标检测YOLO实战应用案例100讲-树上果实识别与跟踪计数(续)

目录 3.2 损失函数优化 3.3 实验过程 3.3.1 果实图像采集 3.3.2 数据扩增...

Docker 文件和卷 权限拒绝

一 创作背景 再复制Docker影像文件或访问Docker容器内已安装卷上的文件时我们常常会遇到&#xff1a;“权限被拒绝”的错误&#xff0c;在此&#xff0c;您将了解到为什么会出现“权限被拒绝”的错误以及如何解决这个问题。 二 目的 在深入探讨 Docker 容器中的 Permission De…...

Appium Server 启动失败常见原因及解决办法

Error: listen EADDRINUSE: address already in use 0.0.0.0:4723 如下图&#xff1a; 错误原因&#xff1a;Appium 默认的4723端口被占用 解决办法&#xff1a; 出现该提示&#xff0c;有可能是 Appium Server 已启动&#xff0c;关闭已经启动的 Appium Server 即可。472…...

将Abp默认事件总线改造为分布式事件总线

文章目录 原理创建分布式事件总线实现自动订阅和事件转发 使用启动Redis服务配置传递Abp默认事件传递自定义事件 项目地址 原理 本地事件总线是通过Ioc容器来实现的。 IEventBus接口定义了事件总线的基本功能&#xff0c;如注册事件、取消注册事件、触发事件等。 Abp.Events…...

Jupyter Notebook修改默认工作目录

1、参考修改Jupyter Notebook的默认工作目录_jupyter文件路径-CSDN博客修改配置文件 2.在上述博客内容的基础上&#xff0c;这里不是删除【%USERPROFILE%】而是把这个地方替换为所要设置的工作目录路径&#xff0c; 3.【起始位置】也可以更改为所要设置的工作目录路径&#x…...

高校/企业如何去做数据挖掘呢?

随着近年来人工智能及大数据、云计算进入爆发时期&#xff0c;依托三者进行的数据分析、数据挖掘服务已逐渐成为各行业进行产业升级的载体&#xff0c;缓慢渗透进我们的工作和生活&#xff0c;成为新时代升级版的智能“大案牍术”。 那么对于多数企业来说&#xff0c;如何做数据…...

数据仓库-数据治理小厂实践

一、简介 数据治理贯穿数仓中数据的整个生命周期&#xff0c;从数据的产生、加载、清洗、计算&#xff0c;再到数据展示、应用&#xff0c;每个阶段都需要对数据进行治理&#xff0c;像有些比较大的企业都是有自己的数据治理平台或者会开发一些便捷的平台&#xff0c;对于没有平…...

【C++多线程编程】(五)之 线程生命周期管理join() 与 detach()

在C中&#xff0c;std::thread 类用于创建和管理线程。std::thread 提供了两种主要的方法来控制线程的生命周期&#xff1a;join 和 detach。 detach方式&#xff0c;启动的线程自主在后台运行&#xff0c;当前的代码继续往下执行&#xff0c;不等待新线程结束。join方式&…...

金融信贷场景的风险“要素”与主要“风险点”

目录 要素一:贷款对象 风险点1:为不具备主体资格或主体资格有瑕疵的借款人发放贷款 风险表现: 防控措施: 风险点2:向国家限控行业发放贷款 风险表现: 防控措施: 风险点3:受理不符合准入条件的客户申请 风险表现: 防控措施: 要素二:金额 风险点4:过渡授…...

ubuntu下docker安装,配置python运行环境

参考自: 1.最详细ubuntu安装docker教程 2.使用docker搭建python环境 首先假设已经安装了docker&#xff0c;卸载原来的docker 在命令行中运行&#xff1a; sudo apt-get updatesudo apt-get remove docker docker-engine docker.io containerd runc 安装docker依赖 apt-get…...

在Docker中安装kafka遇到问题记录

命令含义解答&#xff1a; 在docker安装kafka的时候&#xff0c;启动kafka的时候会执行下面语句&#xff1a; docker run -d --log-driver json-file --log-opt max-size100m --log-opt max-file2 --name kafka -p 9092:9092 -e KAFKA_BROKER_ID0 -e KAFKA_ZOOKEEPER_CONNEC…...

aws-waf-cdn 基于规则组的永黑解决方案

1. 新建waf 规则组 2. 为规则组添加规则 根据需求创建不同的规则 3. waf中附加规则组 &#xff08;此时规则组所有规则都会附加到waf中&#xff0c;但是不会永黑&#xff09; 此刻&#xff0c;可以选择测试下规则是否生效&#xff0c;测试前确认保护资源绑定无误 4. 创建堆…...

如何实现免费无限流量云同步笔记软件Obsidian?

目录 前言 如何实现免费无限流量云同步笔记软件Obsidian&#xff1f; 一、简介 软件特色演示&#xff1a; 二、使用免费群晖虚拟机搭建群晖Synology Drive服务&#xff0c;实现局域网同步 1 安装并设置Synology Drive套件 2 局域网内同步文件测试 三、内网穿透群晖Synol…...

GPTs | Actions应用案例

上篇文章说道&#xff0c;如何使用创建的GPTs通过API接口去获取外部的一些信息&#xff0c;然后把获取的外部信息返回给ChatGPT让它加工出来&#xff0c;回答你的问题&#xff0c;今天我们就来做一个通俗易懂的小案例&#xff0c;让大家来初步了解一下它的使用法&#xff01; …...

淄博做网站多少钱/重庆seo排名技术

时间&#xff1a;2014年4月29日 十天冲刺第六天&#xff1a; 今天完成进度&#xff1a; 帮周亚豪一起设计界面LOGO&#xff0c;查找Android自定义对话框(Dialog)位置,大小的方法。 明天计划进度&#xff1a; 实现Android自定义对话框(Dialog)位置,大小,结合程序考虑设置弹出条件…...

唐山高端网站建设/国内重大新闻10条

author&#xff1a;skate time&#xff1a;2013/03/01 mysql在线无性能影响删除7G大表 如何在mysql数据库里删除7G(或更大)大表&#xff0c;使其又不影响服务器的io&#xff0c;导致性能下降影响业务。先不说其是mysql表&#xff0c;就是普通文件&#xff0c;如果直接rm删除&a…...

霸州网站制作/安卓优化大师老版本下载

今天我们来学习&#xff1a;码云&#xff08;Gitee&#xff09;授权第三方登录&#xff0c;相比之前 支付宝登录、腾讯QQ登录 以及 新浪微博登录 来说&#xff0c;相对于比较简单 一、准备工作 1、登录 码云官网 官网地址&#xff1a;https://gitee.com/注册、登录我们的账号…...

导购网站如何做/微信推广链接怎么制作

动态代理分为Java SDK 动态代理以及cglib动态代理&#xff0c;这里先了解下Java SDK动态代理 Java SDK动态代理代码demo&#xff1a; import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflect.Proxy;public class JDKDynamic…...

ksweb wordpress/百度推广外推联系方式

当前的CPU和GPU是分立设计的处理器,不能高效率地协同工作,编写同时运行于CPU和GPU的程序也是相当麻烦。由于CPU和GPU拥有独立的地址空间,应用程序不得不明确地控制数据在CPU和GPU之间的流动。CPU代码通过系统调用向GPU发送任务,此类系统调用一般由GPU驱动程序管理,而驱动程…...

宁阳移动网站制作/如何通过网络营销自己

Created by Marydon on 写在最后 本博客致力于创作纯编程文章&#xff0c;还博客一片净土&#xff01; 以后此类文章发布地址变更至&#xff1a;https://www.jianshu.com/u/45a4c4696c9a&#xff0c;敬请关注&#xff01; 简书不允许发布的情况时&#xff0c;会在此发布&#x…...