当前位置: 首页 > news >正文

模式识别与机器学习(八):决策树

1.原理

决策树(Decision Tree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。

一般,一棵决策树包含一个根节点,若干个内部结点和若干个叶结点。

叶结点对应于决策结果,其他每个结点对应于一个属性测试。每个结点包含的样本集合根据属性测试的结果划分到子结点中,根结点包含样本全集,从根结点到每个叶结点的路径对应了一个判定的测试序列。决策树学习的目的是产生一棵泛化能力强,即处理未见示例强的决策树。

使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

1.步骤

至于如何生成决策树,具体步骤如下图:
在这里插入图片描述

上图就是在生成决策树的过程中经历的步骤。详细步骤如下:

(1).首先从开始位置,将所有数据划分到一个节点,即根节点。

(2).然后经历橙色的两个步骤,橙色的表示判断条件:

若数据为空集,跳出循环。如果该节点是根节点,返回null;如果该节点是中间节点,将该节点标记为训练数据中类别最多的类

若样本都属于同一类,跳出循环,节点标记为该类别;

(3).如果经过橙色标记的判断条件都没有跳出循环,则考虑对该节点进行划分。既然是算法,则不能随意的进行划分,要讲究效率和精度,选择当前条件下的最优属性划分(什么是最优属性,这是决策树的重点,后面会详细解释)

(4).经历上步骤划分后,生成新的节点,然后循环判断条件,不断生成新的分支节点,直到所有节点都跳出循环。

(5).结束。这样便会生成一棵决策树。

2.划分选择

了解了其步骤后,便明白了其关键便是如何寻找最优属性,其选择方法一般有三种。

(1).信息增益

通过方程 Gain ⁡ ( D , a ) = Ent ⁡ ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ Ent ⁡ ( D v ) \operatorname{Gain}(D,a)\mathrm{=}\operatorname{Ent}(D)-\sum_{v=1}^{V}\frac{|D^{v}|}{|D|}\operatorname{Ent}(D^{v}) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)

来计算每个属性的信息增益,最优属性即为信息增益最大的属性。 E n t ( D ) = − ∑ k = 1 ∣ γ ∣ p k log ⁡ 2 p k \begin{aligned}\mathrm{Ent}(D)&=-\sum_{k=1}^{|\gamma|}p_k\log_2p_k\end{aligned} Ent(D)=k=1γpklog2pk
,Ent(D)即为样本D的信息熵,由该公式计算可得。

(2).信息增益率

信息增益准则对可取值数目较多的属性有所偏好,增益率定义如下:
G a i n _ r a t i o ( D , a ) = G a i n ( D , a ) I V ( a ) \mathrm{Gain\_ratio}(D,a)=\frac{\mathrm{Gain}(D,a)}{\mathrm{IV}(a)} Gain_ratio(D,a)=IV(a)Gain(D,a)

其中 I V ( a ) = − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ log ⁡ 2 ∣ D v ∣ ∣ D ∣ \begin{aligned}\mathrm{IV}(a)=&-\sum_{v=1}^V\frac{|D^v|}{|D|}\log_2\frac{|D^v|}{|D|}\end{aligned} IV(a)=v=1VDDvlog2DDv称为属性a的固有值。该划分算法先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的属性。

(3).基尼指数

数据D的纯度可用基尼值来度量,即用如下公式来计算:
G i n i ( D ) = ∑ k = 1 ∣ γ ∣ ∑ k ′ ≠ k p k p k ′ = 1 − ∑ k = 1 ∣ γ ∣ p k 2 \mathrm{Gini}(D){=\sum_{k=1}^{|\gamma|}\sum_{k^{\prime}\neq k}p_kp_{k^{\prime}}=1-\sum_{k=1}^{|\gamma|}p_k^2} Gini(D)=k=1γk=kpkpk=1k=1γpk2

Gini(D)反映了从数据集D中随机抽取两个样本,其类别标记不一致的概率,Gini(D)越小,表示数据集D的纯度越高。而属性a的基尼指数则是根据这个公式推广而得,具体形式如下: G i n i _ i n d e x ( D , a ) = ∑ v = 1 V ∣ D v ∣ ∣ D ∣ G i n i ( D v ) \mathrm{Gini\_index}(D,a)=\sum_{v=1}^{V}\frac{|D^{v}|}{|D|}\mathrm{Gini}(D^{v}) Gini_index(D,a)=v=1VDDvGini(Dv)
。在候选属性集合A中,选择那个使得划分后基尼指数最小的属性作为最优划分属性。

3.剪枝

剪枝顾名思义就是给决策树 “去掉” 一些判断分支,同时在剩下的树结构下仍然能得到不错的结果。之所以进行剪枝,是为了防止或减少 “过拟合现象” 的发生,是决策树具有更好的泛化能力。

剪枝主要分为两种方法,其一是预剪枝,即在决策树构造时就进行剪枝。在决策树构造过程中,对节点进行评估,如果对其划分并不能再验证集中提高准确性,那么该节点就不要继续王下划分。这时就会把当前节点作为叶节点。其二是后剪枝,即在生成决策树之后再剪枝。通常会从决策树的叶节点开始,逐层向上对每个节点进行评估。如果剪掉该节点,带来的验证集中准确性差别不大或有明显提升,则可以对它进行剪枝,用叶子节点来代填该节点。

2.代码

在scikit-learn中,你可以通过设置DecisionTreeClassifier的参数来进行决策树的剪枝,以防止过拟合。以下是一些常用的参数:

max_depth:决策树的最大深度。这可以防止树过于复杂,导致过拟合。

min_samples_split:分割内部节点所需的最少样本数。如果一个节点的样本数少于这个值,那么这个节点就不会被分割。

min_samples_leaf:在叶节点处需要的最小样本数。这可以防止创建样本数过少的叶节点。

max_leaf_nodes:最大叶节点数量。这是另一种控制树大小的方法。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建决策树分类器,并设置剪枝参数
clf = DecisionTreeClassifier(max_depth=3, min_samples_split=10, min_samples_leaf=5, max_leaf_nodes=10)# 训练模型
clf.fit(X_train, y_train)# 预测测试集
y_pred = clf.predict(X_test)# 打印预测结果
print(y_pred)

相关文章:

模式识别与机器学习(八):决策树

1.原理 决策树(Decision Tree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模…...

Pinely Round 3 (Div. 1 + Div. 2)(A~D)(有意思的题)

A - Distinct Buttons 题意: 思路:模拟从(0,0)到每个位置需要哪些操作,如果总共需要4种操作就输出NO。 // Problem: A. Distinct Buttons // Contest: Codeforces - Pinely Round 3 (Div. 1 Div. 2) // URL: https…...

在Linux下探索MinIO存储服务如何远程上传文件

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 创建Buckets和Access Keys二. Linux 安装Cpolar三. 创建连接MinIO服务公网地…...

持续集成交付CICD:Linux 部署 Jira 9.12.1

目录 一、实验 1.环境 2.K8S master节点部署Jira 3.Jira 初始化设置 4.Jira 使用 一、实验 1.环境 (1)主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins slave (从节点) jira9.12.1…...

Linux命令-查看内存、GC情况及jmap 用法

查看进程占用内存、CPU使用情况 1、查看进程 #jps 查看所有java进程 #top 查看cpu占用高进程 输入m :根据内存排序 topMem: 16333644k total, 9472968k used, 6860676k free, 165616k buffers Swap: 0k total, 0k used, 0k free, 6…...

nginx安装letsencrypt证书

1.安装推荐安装letsencrypt证书的客户端工具 官方推荐通过cerbot客户端安装letsencrypt 官方推荐使用snap客户端安装cerbot客户端 apt install snapd snap install --classic certbot 建立certbot软链接:ln -s /snap/bin/certbot /usr/bin/certbot 2.开始安装letse…...

docker笔记1-安装与基础命令

docker的用途: 可以把应用程序代码及运行依赖环境打包成镜像,作为交付介质,在各种环境部署。可以将镜像(image)启动成容器(container),并提供多容器的生命周期进行管理(…...

VSCode软件与SCL编程

原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC,是Visual studio code的缩写,是由微软开发的跨平台的轻量级编辑器,支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等&#xff0c…...

Opencv中的滤波器

一副图像通过滤波器得到另一张图像,其中滤波器又称为卷积核,滤波的过程称之为卷积。 这就是一个卷积的过程,通过一个卷积核得到另一张图片,明显发现新的到的图片边缘部分更加清晰了(锐化)。 上图就是一个卷…...

<JavaEE> 基于 TCP 的 Socket 通信模型

目录 一、认识相关API 1)ServerSocket 2)Socket 二、TCP字节流套接字通信模型概述 三、回显客户端-服务器 1)服务器代码 2)客户端代码 一、认识相关API 1)ServerSocket ServerSocket 常用构造方法ServerSocke…...

[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)

题解 题目本身不难想 首先注意到所有查询的序列长度都是小于logn级别的 我们可以枚举序列长度len,然后用类似滑动窗口的方法,一次性预处理出每种字串的所有出现位置,也就是开N个set去维护所有的位置。预处理会进行O(logn)轮,每…...

机器学习算法(11)——集成技术(Boosting——梯度提升)

一、说明 在在这篇文章中,我们学习了另一种称为梯度增强的集成技术。这是我在机器学习算法集成技术文章系列中与bagging一起介绍的一种增强技术。我还讨论了随机森林和 AdaBoost 算法。但在这里我们讨论的是梯度提升,在我们深入研究梯度提升之前&#xf…...

使用GBASE南大通用负载均衡连接池

若要使用负载均衡连接池功能,需要在连接串中配置相关的关键字。有关更详细的关键字信息在 GBASE南大通用 连接参数表‛中介绍。假设存在如下场景:  现有集群中存在 4 个节点: 192.168.9.173, 192.168.9.174, 192.168.9.175, 192.168.9.17…...

Flink 数据序列化

为 Flink 量身定制的序列化框架 大家都知道现在大数据生态非常火,大多数技术组件都是运行在JVM上的,Flink也是运行在JVM上,基于JVM的数据分析引擎都需要将大量的数据存储在内存中,这就不得不面临JVM的一些问题,比如Ja…...

【并发设计模式】聊聊两阶段终止模式如何优雅终止线程

在软件设计中,抽象出了23种设计模式,用以解决对象的创建、组合、使用三种场景。在并发编程中,针对线程的操作,也抽象出对应的并发设计模式。 两阶段终止模式- 优雅停止线程避免共享的设计模式- 只读、Copy-on-write、Thread-Spec…...

Java实现非对称加密【详解】

Java实现非对称加密 1. 简介2. 非对称加密算法--DH(密钥交换)3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例2 1. 简介 公开密钥密码学(英语:Public-key cryptography)也称非对称式密…...

simulinkveristandlabview联合仿真——模型导入搭建人机界面

目录 1.软件版本 2.搭建simulink仿真模型 编译错误 3.导入veristand并建立工程 4.veristand导入labview labview显示veristand工程数据 labview设置veristand工程数据 运行labview工程 1.软件版本 matlab2020a,veristand2020 R4,labview2020 SP…...

k8s中Helm工具实践

k8s中Helm工具实践 1)安装redis-cluster 先搭建一个NFS的SC(只需要SC,不需要pvc),具体步骤此文档不再提供,请参考前面相关章节。 下载redis-cluster的chart包 helm pull bitnami/redis-cluster --untar…...

推荐算法架构7:特征工程(吊打面试官,史上最全!)

系列文章,请多关注 推荐算法架构1:召回 推荐算法架构2:粗排 推荐算法架构3:精排 推荐算法架构4:重排 推荐算法架构5:全链路专项优化 推荐算法架构6:数据样本 推荐算法架构7:特…...

Web前端 ---- 【Vue】vue路由守卫(全局前置路由守卫、全局后置路由守卫、局部路由path守卫、局部路由component守卫)

目录 前言 全局前置路由守卫 全局后置路由守卫 局部路由守卫之path守卫 局部路由守卫之component守卫 前言 本文介绍Vue2最后的知识点,关于vue的路由守卫。也就是鉴权,不是所有的组件任何人都可以访问到的,需要权限,而根据权限…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...