工商做年报网站/seo怎么发布外链
利用图像特征的keypoints和descriptor来实现图像的匹配与定位。图像匹配算法主要有暴力匹配和FLANN匹配,而图像定位是通过图像匹配结果来反向查询它们在目标图片中的具体坐标位置。
以QQ登录界面为例,将整个QQ登录界面保存为QQ.png文件,QQ登录界面是在计算机的1920×1080分辨率下截图保存的;再把计算机的分辨率改为1280×1024,将QQ登录界面的用户头像保存并对图像进行旋转处理,最后保存为portrait.png文件
两张图片文件的像素分辨率和图像位置都发生了变化,如果要通过portrait.png去匹配定位它在QQ.png所在的坐标位置,自动化工具PyAutoGUI肯定是无法实现的。若想解决这种复杂的图像识别问题,只能使用计算机视觉技术。在OpenCV里面,QQ.png称为目标图像,portrait.png称为训练图像
实现过程:
(1)分别对两张图片的图像进行特征检测,图像特征检测算法有SURF、SIFT和ORB,两张图片必须使用同一种特征检测算法。
(2)根据两张图片的特征描述符(即变量descriptor)进行匹配,匹配算法有暴力匹配和FLANN匹配,不同的匹配算法所产生的匹配结果存在一定的差异。
(3)对两张图片的匹配结果进行数据清洗,去除一些错误匹配。错误匹配是由于在图片不同区域内出现多处相似的特征而导致的。
(4)在匹配结果里抽取中位数,利用中位数来反向查询它在目标图片所对应像素点的坐标位置,这个坐标位置也是自动化开发中使用的图片定位坐标。
线面是让chatgpt把上面图片里的代码修改为了c++。没仔细看是否正确。
#include <opencv2/opencv.hpp>
#include <vector>int main() {// Load imagescv::Mat img1 = cv::imread("QQ.png");cv::Mat img2 = cv::imread("portrait.png");// Use SIFT algorithm to get keypoints and descriptorscv::Ptr<cv::SIFT> sift = cv::SIFT::create();std::vector<cv::KeyPoint> kp1, kp2;cv::Mat des1, des2;sift->detectAndCompute(img1, cv::noArray(), kp1, des1);sift->detectAndCompute(img2, cv::noArray(), kp2, des2);// Define FLANN matchercv::Ptr<cv::FlannBasedMatcher> flann = cv::FlannBasedMatcher::create();std::vector<std::vector<cv::DMatch>> matches;flann->knnMatch(des1, des2, matches, 2);// Filter good matchesstd::vector<cv::DMatch> goodMatches;for (size_t i = 0; i < matches.size(); ++i) {if (matches[i][0].distance < 0.5 * matches[i][1].distance) {goodMatches.push_back(matches[i][0]);}}// Get coordinates of a pointsize_t index = goodMatches.size() / 2;float x = kp1[goodMatches[index].queryIdx].pt.x;float y = kp1[goodMatches[index].queryIdx].pt.y;// Draw rectangle on img1 at (x, y) and display imagecv::rectangle(img1, cv::Point2f(x, y), cv::Point2f(x + 5, y + 5), cv::Scalar(0, 255, 0), 2);cv::imshow("QQ", img1);cv::waitKey(0);cv::destroyAllWindows();return 0;
}
相关文章:

OpenCV之图像匹配与定位
利用图像特征的keypoints和descriptor来实现图像的匹配与定位。图像匹配算法主要有暴力匹配和FLANN匹配,而图像定位是通过图像匹配结果来反向查询它们在目标图片中的具体坐标位置。 以QQ登录界面为例,将整个QQ登录界面保存为QQ.png文件,QQ登…...

掌握JWT:解密身份验证和授权的关键技术
JSON Web Token 1、什么是JWT2、JWT解决了什么问题3、早期的SSO认证4、JWT认证5、JWT优势6、JWT结构Header 标头Payload 负载 Signature 签名 7、代码实现添加依赖生成Token认证token 8、工具类9、JWT整合Web10、拦截器校验11、网关路由校验12、解决多用户登录的问题13、客户端…...

git命令和docker命令
1、git git是分布式的版本控制工具 git可以通过本地仓库管理文件的历史版本记录 # 本地仓库操作的命令 # 初始化本地库 git init # 添加文件到暂存区 git add . git checkout 暂存区要撤销的文件名称 # 提交暂存区文件 git commit -m 注释# 版本穿梭 # 查看提交记录 git log…...

【K8S in Action】服务:让客户端发现pod 并与之通信(2)
一 通过Ingress暴露服务 Ingress (名词) 一一进入或进入的行为;进入的权利;进入的手段或地点;入口。一个重要的原因是每个 LoadBalancer 服务都需要自己的负载均衡器, 以及 独有的公有 IP 地址, 而 Ingres…...

Spring Boot 中实现跨域的几种方式
前言 在现代Web应用中,由于安全性和隐私的考虑,浏览器限制了从一个域向另一个域发起的跨域HTTP请求。解决这个问题的一种常见方式是实现跨域资源共享(CORS)。Spring Boot提供了多种方式来处理跨域请求,本文将介绍其中的…...

WT2605C音频蓝牙语音芯片:单芯片实现蓝牙+MP3+BLE+电话本多功能应用
在当今的电子产品领域,多功能、高集成度成为了一种趋势。各种产品都需要具备多种功能,以满足用户多样化的需求。针对这一市场趋势,唯创知音推出了一款集成了蓝牙、MP3播放、BLE和电话本功能的音频蓝牙语音芯片——WT2605C,实现了单…...

计算机毕业设计 基于SpringBoot的高校宣讲会管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

Android 使用Serialiable接口和Parcelable接口进行数据传送
一、前言 这篇文章主要针对Serialiable和Parcelable接口来传递对象。呈现的功能是跳转到另一个界面,然后通过toast展现我收到的数据。 二、使用Serialiable接口传递数据 1.创建需要传递的对象 //必须实现Serializable接口,此对象才有传递的资格 publ…...

【数据结构入门精讲 | 第十七篇】一文讲清图及各类图算法
在上一篇中我们进行了的并查集相关练习,在这一篇中我们将学习图的知识点。 目录 概念深度优先DFS伪代码 广度优先BFS伪代码 最短路径算法(Dijkstra)伪代码 Floyd算法拓扑排序逆拓扑排序 概念 下面介绍几种在对图操作时常用的算法。 深度优先D…...

Python 直方图的绘制-`hist()`方法(Matplotlib篇-第7讲)
Python 直方图的绘制-hist()方法(Matplotlib篇-第7讲) 🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹…...

Quartz持久化(springboot整合mybatis版本实现调度任务持久化)--提供源码下载
1、Quartz持久化功能概述 1、实现使用quartz提供的默认11张持久化表存储quartz相关信息。 2、实现定时任务的编辑、启动、关闭、删除。 3、实现自定义持久化表存储quartz定时任务信息。 4、本案例使用springboot整合mybatis框架和MySQL数据库实现持久化 5、提供源码下载 …...

掌握的单词个数 - 华为OD统一考试
OD统一考试 题解: Java / Python / C++ 题目描述 有一个字符串数组 words 和一个字符串 chars。假如可以用 chars 中的字母拼写出 words 中的某个"单词"(字符串),那么我们就认为你掌握了这个单词。 words 的字等仅由 a-z 英文小写宁母组成,例如“abc”。 char…...

如何使用ArcGIS Pro将Excel表转换为SHP文件
有的时候我们得到的数据是一张张的Excel表格,如果想要在ArcGIS Pro中进行分析或者制图则需要先转换为SHP格式,这里为大家介绍一下转换方法,希望能对你有所帮助。 数据来源 本教程所使用的数据是从水经微图中下载的POI数据,除了P…...

11.1Linux串口应用程序开发
UART简介 UART的全称是Universal Asynchronous Receiver and Transmitter,即异步发送和接收。 串口在嵌入式中用途非常的广泛,主要的用途有: 打印调试信息;外接各种模块:GPS、蓝牙; 串口因为结构简单、稳…...

log4j学习
依赖 <!--log4j依赖--> <dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version> </dependency><!--测试--> <dependency><groupId>org.junit.jupiter</g…...

【Vue2+3入门到实战】(4)Vue基础之指令修饰符 、v-bind对样式增强的操作、v-model应用于其他表单元素 详细示例
目录 一、今日学习目标1.指令补充 二、指令修饰符1.什么是指令修饰符?2.按键修饰符3.v-model修饰符4.事件修饰符 三、v-bind对样式控制的增强-操作class1.语法:2.对象语法3.数组语法4.代码练习 四、京东秒杀-tab栏切换导航高亮1.需求:2.准备代…...

【数据结构和算法】找到最高海拔
其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 前缀和的解题模板 2.1.1 最长递增子序列长度 2.1.2 寻找数组中第 k 大的元素 2.1.3 最长公共子序列…...

redis相关问题
1、概述: 1. 非关系型数据库 2. 是分布式缓存数据库 3. 使用 key -value结构存储 2、作用: 用作缓存降低数据库压力,提高性能;可以用作消息队列(削峰、解耦、异步调用) 3、基础语法: 基础命令…...

第41节: Vue3 watch函数
在UniApp中使用Vue3框架时,你可以使用watch函数来观察和响应Vue实例上的数据变化。以下是一个示例,演示了如何在UniApp中使用Vue3框架使用watch函数: <template> <view> <input v-model"message" type"text…...

Centos7:升级gcc、g++到版本5.2.0
背景 Centos7.9版本默认的g版本是4.8.5,在实践golang项目中,用到C14,编译时会报错:gcc: error: unrecognized command line option ‘-stdc14’ 因此,gcc需要升级到更高版本,我这里使用源码编译形式升级到g…...

Pytohn data mode plt
文章目录 文件的读写创建.csv类型的文件,并读取文件创建.xlsx文件 使用Python做图生成数据集切片取值操作修改张量中指定位置的数据 知识点torch.arange(x)torch.tensor(2)Atorch.randn(36).reshape(6,6)shapenumel()reshape(x,y,z)torch.zeros(3,3,4)torch.ones(2,…...

内网离线搭建之----kafka集群
1.系统版本 虚拟机192.168.9.184 虚拟机192.168.9.185 虚拟机192.168.9.186系统 centos7 7.6.1810 2.依赖下载 ps:置顶资源里已经下载好了,直接用!!!!!!!!…...

5.1 显示窗口的内容(一)
一,如何显示窗口的内容? 显示器用于在物理硬件(如计算机显示器或触摸屏显示器)上显示窗口的内容。 屏幕API提供的功能允许我们创建同时写入多个窗口和显示的应用程序。屏幕支持多个显示器,但创建和管理使用多个显示器…...

基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 包围盒构建 4.2 点云压缩 4.3 曲面重建 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ...........................................…...

关于Python里xlwings库对Excel表格的操作(十八)
这篇小笔记主要记录如何【设置单元格数据的对齐方式】。前面的小笔记已整理成目录,可点链接去目录寻找所需更方便。 【目录部分内容如下】【点击此处可进入目录】 (1)如何安装导入xlwings库; (2)如何在Wps下…...

VScode远程连接服务器,Pycharm专业版下载及远程连接(深度学习远程篇)
Visual Code、PyCharm专业版,本地和远程交互。 远程连接需要用到SSH协议的技术,常用的代码编辑器vscode 和 pycharm都有此类功能。社区版的pycharm是免费的,但是社区版不支持ssh连接服务器,只有专业版才可以,需要破解…...

Vue2和Vue3组件间通信方式汇总(3)------$bus
组件间通信方式是前端必不可少的知识点,前端开发经常会遇到组件间通信的情况,而且也是前端开发面试常问的知识点之一。接下来开始组件间通信方式第三弹------$bus,并讲讲分别在Vue2、Vue3中的表现。 Vue2Vue3组件间通信方式汇总(1)…...

PyTorch加载数据以及Tensorboard的使用
一、PyTorch加载数据初认识 Dataset:提供一种方式去获取数据及其label 如何获取每一个数据及其label 总共有多少的数据 Dataloader:为后面的网络提供不同的数据形式 数据集 在编译器中导入Dataset from torch.utils.data import Dataset 可以在jupyter中查看Dataset官方文档&…...

TensorFlow是什么
TensorFlow是什么 Tensorflow是一个Google开发的第二代机器学习系统,克服了第一代系统DistBelief仅能开发神经网络算法、难以配置、依赖Google内部硬件等局限性,应用更加广泛,并且提高了灵活性和可移植性,速度和扩展性也有了大幅…...

docker-compose 安装Sonar并集成gitlab
文章目录 1. 前置条件2. 编写docker-compose-sonar.yml文件3. 集成 gitlab4. Sonar Login with GitLab 1. 前置条件 安装docker-compose 安装docker 创建容器运行的特有网络 创建挂载目录 2. 编写docker-compose-sonar.yml文件 version: "3" services:sonar-postgre…...