当前位置: 首页 > news >正文

7 线性回归及Python实现

1 统计指标

  • 随机变量XXX的理论平均值称为期望: μ=E(X)\mu = E(X)μ=E(X)
  • 但现实中通常不知道μ\muμ, 因此使用已知样本来获取均值
    X‾=1n∑i=1nXi.\overline{X} = \frac{1}{n} \sum_{i = 1}^n X_i. X=n1i=1nXi.
  • 方差variance定义为:
    σ2=E(∣X−μ∣2).\sigma^2 = E(|X - \mu|^2). σ2=E(Xμ2).
  • 用已知样本的数据来代替:
    S2=Var(X)=1n∑i=1n(Xi−μ)2.S^2 = Var(X) = \frac{1}{n} \sum_{i = 1}^n (X_i - \mu)^2. S2=Var(X)=n1i=1n(Xiμ)2.
  • 由于μ\muμ未知, 使用贝塞尔校正:
    S2=Var(X)=1n−1∑i=1n(Xi−X‾)2.S^2 = Var(X) = \frac{1}{n - 1} \sum_{i = 1}^{n} (X_i - \overline{X})^2. S2=Var(X)=n11i=1n(XiX)2.
  • 原因: 在已知数据上, 使用X‾\overline{X}X获得的结果一般更小:
    ∑i=1n−1(Xi−X‾)2≤∑i=1n−1(Xi−μ)2.\sum_{i = 1}^{n - 1} (X_i - \overline{X})^2 \leq \sum_{i = 1}^{n - 1} (X_i - \mu)^2. i=1n1(XiX)2i=1n1(Xiμ)2.
  • 更多解释: https://www.zhihu.com/question/20099757
  • 标准差:
    σX=S=Var(X).\sigma_X = S = \sqrt{Var(X)}. σX=S=Var(X).

偏差与方差:
在这里插入图片描述

  • 方差(again)
    Var(X)=σX2=1n−1∑i=1n(Xi−X‾)(Xi−X‾).Var(X) = \sigma_X^2 = \frac{1}{n - 1} \sum_{i = 1}^{n} (X_i - \overline{X})(X_i - \overline{X}). Var(X)=σX2=n11i=1n(XiX)(XiX).
  • 协方差
    Cov(X,Y)=1n−1∑i=1n(Xi−X‾)(Yi−Y‾).Cov(X, Y) = \frac{1}{n - 1} \sum_{i = 1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}). Cov(X,Y)=n11i=1n(XiX)(YiY).
  • Pearson相关系数
    Corr(X,Y)=ρX,Y=Cov(X,Y)σXσY.Corr(X, Y) = \rho_{X, Y} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}. Corr(X,Y)=ρX,Y=σXσYCov(X,Y).

2 线性回归

2.1 回归任务

分类与回归

  • 分类任务预测类别,即是/否等离散值:如是否生病;
  • 回归任务预测实型值:如气温

拟合空间中的点 (注意数据点没有类别标记, 输出也占一维):

  • 一个条件属性:直线;
  • 两个条件属性:平面;
  • 更多条件属性:超平面.

拟合线:
在这里插入图片描述

3 局部线性回归

4 岭回归

5 Lasso回归

6 小结

相关文章:

7 线性回归及Python实现

1 统计指标 随机变量XXX的理论平均值称为期望: μE(X)\mu E(X)μE(X)但现实中通常不知道μ\muμ, 因此使用已知样本来获取均值 X‾1n∑i1nXi.\overline{X} \frac{1}{n} \sum_{i 1}^n X_i. Xn1​i1∑n​Xi​.方差variance定义为: σ2E(∣X−μ∣2).\sigma^2 E(|…...

适合小团队协作、任务管理、计划和进度跟踪的项目任务管理工具有哪些?

适合小团队协作、任务管理、计划和进度跟踪的项目任务管理工具有哪些? 大家可以参考这个模板:http://s.fanruan.com/irhj8管理项目归根结底在管理人、物,扩展来说便是: 人:员工能力、组织机制; 物:项目内…...

从100%进口到自主可控,从600块降到10块,中科院攻克重要芯片

前言 2月28日,“20多位中科院专家把芯片价格打到10块”冲上微博热搜,据河南省官媒大象新闻报道,热搜中提到的中科院专家所在企业为全球最大的PLC分路器芯片制造商仕佳光子,坐落于河南鹤壁。 为实现芯片技术自主可控自立自强&#…...

关于git的一些基本点总结

1.什么是git? git是一个常用的分布式版本管理工具。 2.git 的常用命令: clone(克隆): 从远程仓库中克隆代码到本地仓库 checkout (检出):从本地仓库中检出一个仓库分支然后进行修订 add(添加): 在提交前…...

PyTorch保姆级安装教程

1 安装CUDA1.1 查找Nvidia适用的CUDA版本桌面右键,【打开 NVIDIA控制面板】查看【系统信息】查看NVIDIA的支持的CUDA的版本,下图可知支持的版本是 10.11.2 下载CUDACUDA下载官方网址https://developer.nvidia.com/cuda-toolkit-archive找到适合的版本下载…...

MySQL 上亿大表如何优化?

背景XX 实例(一主一从)xxx 告警中每天凌晨在报 SLA 报警,该报警的意思是存在一定的主从延迟。(若在此时发生主从切换,需要长时间才可以完成切换,要追延迟来保证主从数据的一致性)XX 实例的慢查询…...

Git(狂神课堂笔记)

1.首先去git官网下载我们对应的版本Git - Downloading Package (git-scm.com) 2.安装后我们会发现git文件夹里有三个应用程序: Git Bash:Unix与Linux风格的命令行,使用最多,推荐最多 Git CMD:Windows风格的命令行 G…...

「2」指针进阶,最详细指针和数组难题解题思路

🐶博主主页:ᰔᩚ. 一怀明月ꦿ ❤️‍🔥专栏系列:线性代数,C初学者入门训练 🔥座右铭:“不要等到什么都没有了,才下定决心去做” 🚀🚀🚀大家觉不错…...

云服务器是做什么的?云服务器典型的应用场景介绍

云服务器可能是很多企业以及个人上云用户的必选产品了,但是对于初学者或者非专业的用户来说云服务器还是比较陌生的,它到底是干什么的,如此生活中哪些地方可以接触到,这篇文章将详细的介绍云服务器使用的应用场景以及相关的操作 本…...

【论文随笔】Transfer of temporal logic formulas in reinforcement learning

Zhe Xu and Ufuk Topcu. 2019. Transfer of temporal logic formulas in reinforcement learning. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19). AAAI Press, 4010–4018. 这是一篇将inference和learning结合起来的文章…...

蓝桥杯-货物摆放

蓝桥杯-货物摆放1、题目描述1.1 答案提交1.2 运行限制2、解决方案2.1 方案一:暴力解法(三重循环)2.2 方案二:找出乘机的因子1、题目描述 小蓝有一个超大的仓库,可以摆放很多货物。 现在,小蓝有 n 箱货物要摆放在仓库,每…...

10 种顶流聚类算法 Python 实现(附完整代码)

聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。 有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每…...

微信小程序第一节 —— 自定义顶部、底部导航栏以及获取胶囊体位置信息。

一、前言 大家好!我是 是江迪呀。我们在进行微信小程序开发时,常常需要自定义一些东西,比如自定义顶部导航、自定义底部导航等等。那么知道这些自定义内容的具体位置、以及如何适配不同的机型就变得尤为重要。下面让我以在iPhone机型&#x…...

快速吃透π型滤波电路-LC-RC滤波器

π型滤波器简介 π型滤波器包括两个电容器和一个电感器,它的输入和输出都呈低阻抗。π型滤波有RC和LC两种, 在输出电流不大的情况下用RC,R的取值不能太大,一般几个至几十欧姆,其优点是成本低。其缺点是电阻要消耗一些…...

聊聊混沌工程

这是鼎叔的第五十四篇原创文章。行业大牛和刚毕业的小白,都可以进来聊聊。欢迎关注本专栏和微信公众号《敏捷测试转型》,大量原创思考文章陆续推出。混沌工程是一门新兴学科,它不仅仅只是个技术活动,还包含如何设计能够持续协作的…...

做为骨干网络的分类模型的预训代码安装配置简单记录

一、安装配置环境 1、准备工作 代码地址 GitHub - bubbliiiing/classification-pytorch: 这是各个主干网络分类模型的源码,可以用于训练自己的分类模型。 # 创建环境 conda create -n ptorch1_2_0 python3.6 # 然后启动 conda install pytorch1.2.0 torchvision…...

网络协议(九):应用层(域名、DNS、DHCP)

网络协议系列文章 网络协议(一):基本概念、计算机之间的连接方式 网络协议(二):MAC地址、IP地址、子网掩码、子网和超网 网络协议(三):路由器原理及数据包传输过程 网络协议(四):网络分类、ISP、上网方式、公网私网、NAT 网络…...

有趣的小知识(三)提升网站速度的秘诀:掌握缓存基础,让你的网站秒开

像MySql等传统的关系型数据库已经不能适用于所有的业务场景,比如电商系统的秒杀场景,APP首页的访问流量高峰场景,很容易造成关系型数据库的瘫痪,随着缓存技术的出现很好的解决了这个问题。 一、缓存的概念(什么是缓存…...

SpringCloud之服务拆分和实现远程调用案例

服务拆分对单体架构项目来说:简单方便,高度耦合,扩展性差,适合小型项目。而对于分布式架构来说:低耦合,扩展性好,但架构复杂,难度大。微服务就是一种良好的分布式架构方案&#xff1…...

mybatis: Invalid bound statement (not found): com.atguigu.dao.UserDao.save

问题描述: 1 问题实质: dao层(又叫mapper接口)跟mapper.xml文件没有映射 2 问题原因: 出现这种映射问题的原因分为低级原因和更低级原因两种 更低级原因: (1)dao层的方法和mapper.xml中的方法不一样; (2)mapper中的namespace 值 和对应的dao层entity层不一致 &…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

基于服务器使用 apt 安装、配置 Nginx

🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...