当前位置: 首页 > news >正文

Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头

程序示例精选
Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头
如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对《Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


运行结果

在这里插入图片描述


文章目录

一、所需工具软件
二、使用步骤
       1. 主要代码
       2. 运行结果
三、在线协助

一、所需工具软件

       1. Python
       2. Pycharm

二、使用步骤

代码如下(示例):

def detect(save_img=False):source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))# Directoriessave_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir# Initializeset_logging()device = select_device(opt.device)half = device.type != 'cpu'  # half precision only supported on CUDA# Load modelmodel = attempt_load(weights, map_location=device)  # load FP32 modelstride = int(model.stride.max())  # model strideimgsz = check_img_size(imgsz, s=stride)  # check img_sizeif half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = check_imshow()cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz, stride=stride)else:save_img = Truedataset = LoadImages(source, img_size=imgsz, stride=stride)# Get names and colorsnames = model.module.names if hasattr(model, 'module') else model.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in names]# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run oncet0 = time.time()# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfor i, det in enumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.countelse:p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)p = Path(p)  # to Pathsave_path = str(save_dir / p.name)  # img.jpgtxt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txts += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhif len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img:  # Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)# Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')# Stream resultsif view_img:cv2.imshow(str(p), im0)cv2.waitKey(1)  # 1 millisecond# Save results (image with detections)if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else:  # 'video'if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfourcc = 'mp4v'  # output video codecfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''print(f"Results saved to {save_dir}{s}")print(f'Done. ({time.time() - t0:.3f}s)')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', nargs='+', type=str, default='yolov5_crack_wall_epoach150_batchsize5.pt', help='model.pt path(s)')parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcamparser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--view-img', action='store_true', help='display results')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--update', action='store_true', help='update all models')parser.add_argument('--project', default='runs/detect', help='save results to project/name')parser.add_argument('--name', default='exp', help='save results to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')opt = parser.parse_args()print(opt)check_requirements()with torch.no_grad():if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect()strip_optimizer(opt.weights)else:detect()
运行结果

在这里插入图片描述

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!

1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作
5)云服务器申请
6)网站制作

当前文章连接:https://blog.csdn.net/alicema1111/article/details/132666851
个人博客主页:https://blog.csdn.net/alicema1111?type=blog
博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

博主推荐:
Python人脸识别考勤打卡系统:
https://blog.csdn.net/alicema1111/article/details/133434445
Python果树水果识别:https://blog.csdn.net/alicema1111/article/details/130862842
Python+Yolov8+Deepsort入口人流量统计:https://blog.csdn.net/alicema1111/article/details/130454430
Python+Qt人脸识别门禁管理系统:https://blog.csdn.net/alicema1111/article/details/130353433
Python+Qt指纹录入识别考勤系统:https://blog.csdn.net/alicema1111/article/details/129338432
Python Yolov5火焰烟雾识别源码分享:https://blog.csdn.net/alicema1111/article/details/128420453
Python+Yolov8路面桥梁墙体裂缝识别:https://blog.csdn.net/alicema1111/article/details/133434445

相关文章:

Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头

程序示例精选 PythonYolov5Qt交通标志特征识别窗体界面相片视频摄像头 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《PythonYolov5Qt交通标志特征识别窗体界面相片视频摄像头》编写代码&a…...

浅谈高并发以及三大利器:缓存、限流和降级

引言 高并发背景 互联网行业迅速发展,用户量剧增,系统面临巨大的并发请求压力。 软件系统有三个追求:高性能、高并发、高可用,俗称三高。三者既有区别也有联系,门门道道很多,全面讨论需要三天三夜&#…...

深入ArkUI:深入实战组件text和text input

文章目录 Text组件介绍Text组件的属性方法Text:文本显示组件4.3TextInput组件实战案例:图片宽度控制页面本文总结要点回顾在今天的课程中,我们将深入学习ArkUI提供的基础组件,着重探讨text和text input两个组件。 Text组件介绍 Text组件是一个用于显示文本的组件,其主要作…...

WPF 基础(Binding 二)

续接上文,本章继续讲解WPF Binding相关知识,主要内容是绑定的模式和绑定源(Source) 5绑定模式 在使用Binding类的时候有4中绑定模式可以选择 BindingMode TwoWay导致对源属性或目标属性的更改可自动更新对方。此绑定类型适用于…...

限制el-upload组件的上传文件大小

限制el-upload组件的上传文件大小 <el-upload :before-upload"handleBeforeUpload"><!-- 其他组件内容 --> </el-upload>Vue实例中定义handleBeforeUpload方法来进行文件大小的验证。你可以使用file.size属性来获取文件的大小&#xff0c;并与你期…...

什么是爬虫,为什么爬虫会导致服务器负载跑满

在我们日常使用服务器的过程中&#xff0c;经常会有遇到各种各样的问题。今天就有遇到用户来跟德迅云安全反馈自己服务器负载跑满&#xff0c;给用户详细排查后也未发现异常&#xff0c;抓包查看也没有明显攻击特征&#xff0c;后续查看发现是被爬虫爬了&#xff0c;调整处理好…...

线上隐私保护的未来:分布式身份DID的潜力

在日益数字化的世界中&#xff0c;人们的生活越来越多地依赖于互联网&#xff0c;数字身份也因而变得越来越重要。根据法律规定&#xff0c;互联网应用需要确认用户的真实身份才能提供各种服务&#xff0c;而用户则希望在进行身份认证的同时能够尽量保护他们的个人隐私&#xf…...

服务器被入侵后如何查询连接IP以及防护措施

目前越来越多的服务器被入侵&#xff0c;以及攻击事件频频的发生&#xff0c;像数据被窃取&#xff0c;数据库被篡改&#xff0c;网站被强制跳转到恶意网站上&#xff0c;网站在百度的快照被劫持等等的攻击症状层出不穷&#xff0c;在这些问题中&#xff0c;如何有效、准确地追…...

【开源】基于Vue+SpringBoot的公司货物订单管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 客户管理模块2.2 商品维护模块2.3 供应商管理模块2.4 订单管理模块 三、系统展示四、核心代码4.1 查询供应商信息4.2 新增商品信息4.3 查询客户信息4.4 新增订单信息4.5 添加跟进子订单 五、免责说明 一、摘要 1.1 项目…...

2023-12-29 服务器开发-Centos部署LNMP环境

摘要: 2023-12-29 服务器开发-Centos部署LNMP环境 centos7.2搭建LNMP具体步骤 1.配置防火墙 CentOS 7.0以上的系统默认使用的是firewall作为防火墙&#xff0c; 关闭firewall&#xff1a; systemctl stop firewalld.service #停止firewall systemctl disable fire…...

CEC2017(Python):五种算法(DE、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介 1、差分进化算法DE 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献&#xff1a; [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem defini…...

数字身份验证:跨境电商如何应对账户安全挑战?

在数字化时代&#xff0c;随着跨境电商的蓬勃发展&#xff0c;账户安全问题逐渐成为行业和消费者关注的焦点。随着网络犯罪日益猖獗&#xff0c;用户的数字身份安全面临着更加复杂的威胁。本文将深入探讨数字身份验证在跨境电商中的重要性&#xff0c;并探讨各种创新技术和策略…...

Nature | 大型语言模型(LLM)能够发现和产生新知识吗?

大型语言模型&#xff08;LLM&#xff09;是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络&#xff0c;这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义&#xff0c;并理解其中的单词和短语之间的关系。通…...

C# 使用ZXing.Net生成二维码和条码

写在前面 条码生成是一个经常需要处理的功能&#xff0c;本文介绍一个条码处理类库&#xff0c;ZXing用Java实现的多种格式的一维二维条码图像处理库&#xff0c;而ZXing.Net是其.Net版本的实现。 在WinForm下使用该类库需要从NuGet安装两个组件&#xff1a; ZXing.Net ZXing…...

Windows系统配置pytorch环境,Jupyter notebook编辑器安装使用(深度学习本地篇)

如今现在好一点的笔记本都自带英伟达独立显卡&#xff0c;对于一些简单的深度学习项目&#xff0c;是不需要连接服务器的&#xff0c;甚至数据量不大的话&#xff0c;cpu也足够进行训练学习。我把电脑上一些以前的笔记整理一下&#xff0c;记录起来&#xff0c;方便自己35岁事业…...

详解“量子极限下运行的光学神经网络”——相干伊辛机

量子计算和量子启发计算可能成为解答复杂优化问题的新前沿&#xff0c;而经典计算机在历史上是无法解决这些问题的。 当今最快的计算机可能需要数千年才能完成高度复杂的计算&#xff0c;包括涉及许多变量的组合优化问题&#xff1b;研究人员正在努力将解决这些问题所需的时间缩…...

uniapp通过蓝牙传输数据 (安卓)

在uni-app中&#xff0c;可以通过原生插件的方式来实现蓝牙传输数据的功能。以下是一般的步骤&#xff1a; 1. 创建一个原生插件 在uni-app项目的根目录下&#xff0c;创建一个原生插件的目录&#xff0c;比如"uni-bluetooth"。然后在该目录下创建一个"Androi…...

LT8612UX-HDMI2.0 to HDMI2.0 and VGA Converter with Audio,支持三通道视频DAC

HDMI2.0 to HDMI2.0 and VGA Converter with Audio 1. 描述 LT8612UX是一个HDMI到HDMI和vga转换器&#xff0c;它将HDMI2.0数据流转换为HDMI2.0信号和模拟RGB信号。 它还输出8通道I2S和SPDIF信号&#xff0c;使高质量的7.1通道音频。 LT8612UX支持符合HDMI2.0/ 1.4规范的…...

python gui programming cook,python gui视频教程

大家好&#xff0c;给大家分享一下python gui programming cook&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; Source code download: 本文相关源码 前言 上一节我们实现了明细窗体GUI的搭建&#xff0c;并且设置了查看、修改、添加三种不…...

亚马逊bsr排名的影响因素,如何提高BSR排名?-站斧浏览器

亚马逊BSR排名的影响因素有哪些&#xff1f; 销售速度&#xff1a;BSR排名主要基于产品的销售速度&#xff0c;即最近一段时间内的销售量。销售速度越快&#xff0c;BSR排名越高。 销售历史&#xff1a;亚马逊会考虑产品的历史销售数据&#xff0c;新上架的产品可能需要一段时…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...