当前位置: 首页 > news >正文

SparkSQL基础解析(三)

1、 Spark SQL概述

1.1什么是Spark SQL

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和
DataSet,并且作为分布式SQL查询引擎的作用。
我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduc的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!

1.2Spark SQL的特点

1)易整合
在这里插入图片描述
2)统一的数据访问方式
在这里插入图片描述

3)兼容Hive
在这里插入图片描述
4)标准的数据连接
在这里插入图片描述

1.3什么是DataFrame

与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。
在这里插入图片描述

上图直观地体现了DataFrame和RDD的区别。左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张表来对待,DataFrame也是懒执行的。性能上比RDD要高,主要原因:
优化的执行计划:查询计划通过Spark catalyst optimiser进行优化。

在这里插入图片描述
比如下面一个例子:
users.join(events,users(“id”) === events(“uid”)).filter(events(“date”)>“2023-01-01”)
在这里插入图片描述
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter推到 join上方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

1.4什么是DataSet

1)是Dataframe API的一个扩展,是Spark最新的数据抽象。
2)用户友好的API风格,既具有类型安全检查也具有Dataframe的查询优化特性。
3)Dataset支持编解码器,当需要访问非堆上的数据时可以避免反序列化整个对象,提高了效率。
4)样例类被用来在Dataset中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet中的字段名称。
5) Dataframe是Dataset的特列,DataFrame=Dataset[Row] ,所以可以通过as方法将Dataframe转换为Dataset。Row是一个类型,跟Car、Person这些的类型一样,所有的表结构信息我都用Row来表示。
6)DataSet是强类型的。比如可以有Dataset[Car],Dataset[Person].
7)DataFrame只是知道字段,但是不知道字段的类型,所以在执行这些操作的时候是没办法在编译的时候检查是否类型失败的,比如你可以对一个String进行减法操作,在执行的时候才报错,而DataSet不仅仅知道字段,而且知道字段类型,所以有更严格的错误检查。就跟JSON对象和类对象之间的类比。

2、 SparkSQL编程

2.1 SparkSession新的起始点

在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。
SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。

2.2 DataFrame

2.2.1 创建

在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换;还可以从Hive Table进行查询返回。
1)从Spark数据源进行创建
(1)查看Spark数据源进行创建的文件格式
scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile
(2)读取json文件创建DataFrame
scala> val df = spark.read.json(“/opt/module/spark/examples/src/main/resources/people.json”)
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
(3)展示结果

scala> df.show
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+

2)从RDD进行转换
3)从Hive Table进行查询返回

2.2.2 SQL风格语法(主要)

1)创建一个DataFrame
scala> val df = spark.read.json("/opt/module/spark/examples/src/main/resources/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
2)对DataFrame创建一个临时表
scala> df.createOrReplaceTempView("people")
3)通过SQL语句实现查询全表
scala> val sqlDF = spark.sql("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
4)结果展示
scala> sqlDF.show
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+
注意:临时表是Session范围内的,Session退出后,表就失效了。如果想应用范围内有效,可以使用全局表。注意使用全局表时需要全路径访问,如:global_temp.people
5)对于DataFrame创建一个全局表
scala> df.createGlobalTempView("people")
6)通过SQL语句实现查询全表
scala> spark.sql("SELECT * FROM global_temp.people").show()
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+

2.2.3 DSL风格语法(次要)

1)创建一个DateFrame
scala> spark.read.
csv   format   jdbc   json   load   option   options   orc   parquet   schema   table   text   textFile
2)查看DataFrame的Schema信息
scala> df.printSchema
root|-- age: long (nullable = true)|-- name: string (nullable = true)
3)只查看”name”列数据
scala> df.select("name").show()
+-------+
|   name|
+-------+
|Michael|
|   Andy|
| Justin|
+-------+
4)查看”name”列数据以及”age+1”数据
scala> df.select($"name", $"age" + 1).show()
+-------+---------+
|   name|(age + 1)|
+-------+---------+
|Michael|     null|
|   Andy|       31|
| Justin|       20|
+-------+---------+
5)查看”age”大于”21”的数据
scala> df.filter($"age" > 21).show()
+---+----+
|age|name|
+---+----+
| 30|Andy|
+---+----+
6)按照”age”分组,查看数据条数
scala> df.groupBy("age").count().show()
+----+-----+
| age|count|
+----+-----+
|  19|     1|
|null|     1|
|  30|     1|
+----+-----+

2.2.4 RDD转换为DateFrame

注意:如果需要RDD与DF或者DS之间操作,那么都需要引入 import spark.implicits._ 【spark不是包名,而是sparkSession对象的名称】
前置条件:导入隐式转换并创建一个RDD
scala> import spark.implicits._
import spark.implicits._

scala> val peopleRDD = sc.textFile(“examples/src/main/resources/people.txt”)
peopleRDD: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at :27
1)通过手动确定转换
scala> peopleRDD.map{x=>val para = x.split(“,”);(para(0),para(1).trim.toInt)}.toDF(“name”,“age”)
res1: org.apache.spark.sql.DataFrame = [name: string, age: int]
2)通过反射确定(需要用到样例类)
(1)创建一个样例类
scala> case class People(name:String, age:Int)
(2)根据样例类将RDD转换为DataFrame
scala> peopleRDD.map{ x => val para = x.split(“,”);People(para(0),para(1).trim.toInt)}.toDF
res2: org.apache.spark.sql.DataFrame = [name: string, age: int]
3)通过编程的方式(了解)
(1)导入所需的类型
scala> import org.apache.spark.sql.types._
import org.apache.spark.sql.types._
(2)创建Schema
scala> val structType: StructType = StructType(StructField(“name”, StringType) :: StructField(“age”, IntegerType) :: Nil)
structType: org.apache.spark.sql.types.StructType = StructType(StructField(name,StringType,true), StructField(age,IntegerType,true))
(3)导入所需的类型
scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row
(4)根据给定的类型创建二元组RDD
scala> val data = peopleRDD.map{ x => val para = x.split(“,”);Row(para(0),para(1).trim.toInt)}
data: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[6] at map at :33
(5)根据数据及给定的schema创建DataFrame
scala> val dataFrame = spark.createDataFrame(data, structType)
dataFrame: org.apache.spark.sql.DataFrame = [name: string, age: int]

2.2.5 DateFrame转换为RDD

直接调用rdd即可
1)创建一个DataFrame
scala> val df = spark.read.json(“/opt/module/spark/examples/src/main/resources/people.json”)
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
2)将DataFrame转换为RDD
scala> val dfToRDD = df.rdd
dfToRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19] at rdd at :29
3)打印RDD
scala> dfToRDD.collect
res13: Array[org.apache.spark.sql.Row] = Array([Michael, 29], [Andy, 30], [Justin, 19])

2.3 DataSet

Dataset是具有强类型的数据集合,需要提供对应的类型信息。

2.3.1 创建

1)创建一个样例类
scala> case class Person(name: String, age: Long)
defined class Person
2)创建DataSet
scala> val caseClassDS = Seq(Person(“Andy”, 32)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

2.3.2 RDD转换为DataSet

SparkSQL能够自动将包含有case类的RDD转换成DataFrame,case类定义了table的结构,case类属性通过反射变成了表的列名。Case类可以包含诸如Seqs或者Array等复杂的结构。
1)创建一个RDD
scala> val peopleRDD = sc.textFile(“examples/src/main/resources/people.txt”)
peopleRDD: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at :27
2)创建一个样例类
scala> case class Person(name: String, age: Long)
defined class Person
3)将RDD转化为DataSet
scala> peopleRDD.map(line => {val para = line.split(“,”);Person(para(0),para(1).trim.toInt)}).toDF()
res8: org.apache.spark.sql.DataFrame = [name: string, age: bigint]

2.3.3 DataSet转换为RDD

调用rdd方法即可。
1)创建一个DataSet
scala> val DS = Seq(Person(“Andy”, 32)).toDS()
DS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
2)将DataSet转换为RDD
scala> DS.rdd
res11: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[15] at rdd at :28

2.4 DataFrame与DataSet的互操作

  1. DataFrame转换为DataSet
    1)创建一个DateFrame
    scala> val df = spark.read.json(“examples/src/main/resources/people.json”)
    df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
    2)创建一个样例类
    scala> case class Person(name: String, age: Long)
    defined class Person
    3)将DateFrame转化为DataSet
    scala> df.as[Person]
    res14: org.apache.spark.sql.Dataset[Person] = [age: bigint, name: string]
  2. DataSet转换为DataFrame
    1)创建一个样例类
    scala> case class Person(name: String, age: Long)
    defined class Person
    2)创建DataSet
    scala> val ds = Seq(Person(“Andy”, 32)).toDS()
    ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
    3)将DataSet转化为DataFrame
    scala> val df = ds.toDF
    df: org.apache.spark.sql.DataFrame = [name: string, age: bigint]
    4)展示
    scala> df.show
    ±—±–+
    |name|age|
    ±—±–+
    |Andy| 32|
    ±—±–+

2.4.1 Dataset转DataFrame

这个很简单,因为只是把case class封装成Row
(1)导入隐式转换
import spark.implicits._
(2)转换
val testDF = testDS.toDF

2.4.2 DataFrame转Dataset

(1)导入隐式转换
import spark.implicits._
(2)创建样例类
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
(3)转换
val testDS = testDF.as[Coltest]
这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便。在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。

2.5 RDD、DataFrame、DataSet

在这里插入图片描述
在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:
RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。
在后期的Spark版本中,DataSet会逐步取代RDD和DataFrame成为唯一的API接口。

2.5.1 三者的共性

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利
2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算。
3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
4、三者都有partition的概念
5、三者有许多共同的函数,如filter,排序等
6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持
import spark.implicits._
7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型

DataFrame:
testDF.map{case Row(col1:String,col2:Int)=>println(col1);println(col2)col1case _=>""}
Dataset:
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型testDS.map{case Coltest(col1:String,col2:Int)=>println(col1);println(col2)col1case _=>""}

2.5.2 三者的区别

  1. RDD:
    1)RDD一般和spark mlib同时使用
    2)RDD不支持sparksql操作
  2. DataFrame:
    1)与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值,如:
    testDF.foreach{
    line =>
    val col1=line.getAsString
    val col2=line.getAsString
    }
    2)DataFrame与Dataset一般不与spark mlib同时使用
    3)DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如:
    dataDF.createOrReplaceTempView(“tmp”)
    spark.sql(“select ROW,DATE from tmp where DATE is not null order by DATE”).show(100,false)
    4)DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
    //保存
    val saveoptions = Map(“header” -> “true”, “delimiter” -> “\t”, “path” -> “hdfs://hadoop102:9000/test”)
    datawDF.write.format(“com.wxn.spark.csv”).mode(SaveMode.Overwrite).options(saveoptions).save()
    //读取
    val options = Map(“header” -> “true”, “delimiter” -> “\t”, “path” -> “hdfs://hadoop102:9000/test”)
    val datarDF= spark.read.options(options).format(“com.wxn.spark.csv”).load()
    利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定。
  3. Dataset:
    1)Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。
    2)DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段。而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
/**rdd("a", 1)("b", 1)("a", 1)
**/
val test: Dataset[Coltest]=rdd.map{line=>Coltest(line._1,line._2)}.toDS
test.map{line=>println(line.col1)println(line.col2)}

可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题

2.6 IDEA创建SparkSQL程序

IDEA中程序的打包和运行方式都和SparkCore类似,Maven依赖中需要添加新的依赖项:

<dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.11</artifactId><version>2.1.1</version>
</dependency>
程序如下:
package com.wxn.sparksqlimport org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}
import org.slf4j.LoggerFactoryobject HelloWorld {def main(args: Array[String]) {//创建SparkConf()并设置App名称val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate()// For implicit conversions like converting RDDs to DataFramesimport spark.implicits._val df = spark.read.json("examples/src/main/resources/people.json")// Displays the content of the DataFrame to stdoutdf.show()df.filter($"age" > 21).show()df.createOrReplaceTempView("persons")spark.sql("SELECT * FROM persons where age > 21").show()spark.stop()}}

2.7 用户自定义函数

在Shell窗口中可以通过spark.udf功能用户可以自定义函数。

2.7.1 用户自定义UDF函数

scala> val df = spark.read.json("examples/src/main/resources/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]scala> df.show()
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+scala> spark.udf.register("addName", (x:String)=> "Name:"+x)
res5: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))scala> df.createOrReplaceTempView("people")scala> spark.sql("Select addName(name), age from people").show()
+-----------------+----+
|UDF:addName(name)| age|
+-----------------+----+
|     Name:Michael|null|
|        Name:Andy|  30|
|      Name:Justin|  19|
+-----------------+----+

2.7.2 用户自定义聚合函数

强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数, 如 count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。
弱类型用户自定义聚合函数:通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。下面展示一个求平均工资的自定义聚合函数。

import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSessionobject MyAverage extends UserDefinedAggregateFunction {
// 聚合函数输入参数的数据类型 
def inputSchema: StructType = StructType(StructField("inputColumn", LongType) :: Nil)
// 聚合缓冲区中值得数据类型
def bufferSchema: StructType = {
StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil)
}
// 返回值的数据类型 
def dataType: DataType = DoubleType
// 对于相同的输入是否一直返回相同的输出。
def deterministic: Boolean = true
// 初始化
def initialize(buffer: MutableAggregationBuffer): Unit = {
// 存工资的总额
buffer(0) = 0L
// 存工资的个数
buffer(1) = 0L
}
// 相同Execute间的数据合并。 
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!input.isNullAt(0)) {
buffer(0) = buffer.getLong(0) + input.getLong(0)
buffer(1) = buffer.getLong(1) + 1
}
}
// 不同Execute间的数据合并 
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 计算最终结果
def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}// 注册函数
spark.udf.register("myAverage", MyAverage)val df = spark.read.json("examples/src/main/resources/employees.json")
df.createOrReplaceTempView("employees")
df.show()
// +-------+------+
// |   name|salary|
// +-------+------+
// |Michael|  3000|
// |   Andy|  4500|
// | Justin|  3500|
// |  Berta|  4000|
// +-------+------+val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees")
result.show()
// +--------------+
// |average_salary|
// +--------------+
// |        3750.0|
// +--------------+
强类型用户自定义聚合函数:通过继承Aggregator来实现强类型自定义聚合函数,同样是求平均工资
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Encoders
import org.apache.spark.sql.SparkSession
// 既然是强类型,可能有case类
case class Employee(name: String, salary: Long)
case class Average(var sum: Long, var count: Long)object MyAverage extends Aggregator[Employee, Average, Double] {
// 定义一个数据结构,保存工资总数和工资总个数,初始都为0
def zero: Average = Average(0L, 0L)
// Combine two values to produce a new value. For performance, the function may modify `buffer`
// and return it instead of constructing a new object
def reduce(buffer: Average, employee: Employee): Average = {
buffer.sum += employee.salary
buffer.count += 1
buffer
}
// 聚合不同execute的结果
def merge(b1: Average, b2: Average): Average = {
b1.sum += b2.sum
b1.count += b2.count
b1
}
// 计算输出
def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count
// 设定之间值类型的编码器,要转换成case类
// Encoders.product是进行scala元组和case类转换的编码器 
def bufferEncoder: Encoder[Average] = Encoders.product
// 设定最终输出值的编码器
def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}import spark.implicits._val ds = spark.read.json("examples/src/main/resources/employees.json").as[Employee]
ds.show()
// +-------+------+
// |   name|salary|
// +-------+------+
// |Michael|  3000|
// |   Andy|  4500|
// | Justin|  3500|
// |  Berta|  4000|
// +-------+------+// Convert the function to a `TypedColumn` and give it a name
val averageSalary = MyAverage.toColumn.name("average_salary")
val result = ds.select(averageSalary)
result.show()
// +--------------+
// |average_salary|
// +--------------+
// |        3750.0|
// +--------------+

3、 SparkSQL数据源

3.1 通用加载/保存方法

3.1.1 手动指定选项

Spark SQL的DataFrame接口支持多种数据源的操作。一个DataFrame可以进行RDDs方式的操作,也可以被注册为临时表。把DataFrame注册为临时表之后,就可以对该DataFrame执行SQL查询。
Spark SQL的默认数据源为Parquet格式。数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作。修改配置项spark.sql.sources.default,可修改默认数据源格式。

val df = spark.read.load("examples/src/main/resources/users.parquet") df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
当数据源格式不是parquet格式文件时,需要手动指定数据源的格式。数据源格式需要指定全名(例如:org.apache.spark.sql.parquet),如果数据源格式为内置格式,则只需要指定简称定json, parquet, jdbc, orc, libsvm, csv, text来指定数据的格式。
可以通过SparkSession提供的read.load方法用于通用加载数据,使用write和save保存数据。 
val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")
peopleDF.write.format("parquet").save("hdfs://hadoop102:9000/namesAndAges.parquet")
除此之外,可以直接运行SQL在文件上:
val sqlDF = spark.sql("SELECT * FROM parquet.`hdfs://hadoop102:9000/namesAndAges.parquet`")
sqlDF.show()
scala> val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")
peopleDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]scala> peopleDF.write.format("parquet").save("hdfs://hadoop102:9000/namesAndAges.parquet")scala> peopleDF.show()
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+scala> val sqlDF = spark.sql("SELECT * FROM parquet.`hdfs:// hadoop102:9000/namesAndAges.parquet`")
17/09/05 04:21:11 WARN ObjectStore: Failed to get database parquet, returning NoSuchObjectException
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]scala> sqlDF.show()
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+

3.1.2 文件保存选项

可以采用SaveMode执行存储操作,SaveMode定义了对数据的处理模式。需要注意的是,这些保存模式不使用任何锁定,不是原子操作。此外,当使用Overwrite方式执行时,在输出新数据之前原数据就已经被删除。SaveMode详细介绍如下表:
在这里插入图片描述

3.2 JSON文件

Spark SQL 能够自动推测 JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载一个 一个JSON 文件。
注意:这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串。

{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}// Primitive types (Int, String, etc) and Product types (case classes) encoders are
// supported by importing this when creating a Dataset.
import spark.implicits._// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files
val path = "examples/src/main/resources/people.json"
val peopleDF = spark.read.json(path)// The inferred schema can be visualized using the printSchema() method
peopleDF.printSchema()
// root
//  |-- age: long (nullable = true)
//  |-- name: string (nullable = true)// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")// SQL statements can be run by using the sql methods provided by spark
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
// +------+
// |  name|
// +------+
// |Justin|
// +------+// Alternatively, a DataFrame can be created for a JSON dataset represented by
// a Dataset[String] storing one JSON object per string
val otherPeopleDataset = spark.createDataset(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherPeople = spark.read.json(otherPeopleDataset)
otherPeople.show()
// +---------------+----+
// |        address|name|
// +---------------+----+
// |[Columbus,Ohio]| Yin|

3.3 Parquet文件

Parquet是一种流行的列式存储格式,可以高效地存储具有嵌套字段的记录。Parquet格式经常在Hadoop生态圈中被使用,它也支持Spark SQL的全部数据类型。Spark SQL 提供了直接读取和存储 Parquet 格式文件的方法。

importing spark.implicits._
import spark.implicits._val peopleDF = spark.read.json("examples/src/main/resources/people.json")peopleDF.write.parquet("hdfs://hadoop102:9000/people.parquet")val parquetFileDF = spark.read.parquet("hdfs:// hadoop102:9000/people.parquet")parquetFileDF.createOrReplaceTempView("parquetFile")val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
namesDF.map(attributes => "Name: " + attributes(0)).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

3.4 JDBC

Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
注意:需要将相关的数据库驱动放到spark的类路径下。

$ bin/spark-shell --master spark://hadoop102:7077 --jars mysql-connector-java-5.1.27-bin.jar// Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
// Loading data from a JDBC source
val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:mysql://hadoop102:3306/rdd").option("dbtable", " rddtable").option("user", "root").option("password", "000000").load()val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "hive")
val jdbcDF2 = spark.read
.jdbc("jdbc:mysql://hadoop102:3306/rdd", "rddtable", connectionProperties)// Saving data to a JDBC source
jdbcDF.write
.format("jdbc")
.option("url", "jdbc:mysql://hadoop102:3306/rdd")
.option("dbtable", "dftable")
.option("user", "root")
.option("password", "000000")
.save()jdbcDF2.write
.jdbc("jdbc:mysql://hadoop102:3306/mysql", "db", connectionProperties)

3.5 Hive数据库

Apache Hive是Hadoop上的SQL引擎,Spark SQL编译时可以包含Hive支持,也可以不包含。包含Hive支持的Spark SQL可以支持Hive表访问、UDF(用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在Spark SQL中包含Hive的库,并不需要事先安装Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。
若要把Spark SQL连接到一个部署好的Hive上,你必须把hive-site.xml复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好Hive,Spark SQL也可以运行。 需要注意的是,如果你没有部署好Hive,Spark SQL会在当前的工作目录中创建出自己的Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。

import java.io.Fileimport org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSessioncase class Record(key: Int, value: String)// warehouseLocation points to the default location for managed databases and tables
val warehouseLocation = new File("spark-warehouse").getAbsolutePathval spark = SparkSession
.builder()
.appName("Spark Hive Example")
.config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport()
.getOrCreate()import spark.implicits._
import spark.sqlsql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")// Queries are expressed in HiveQL
sql("SELECT * FROM src").show()
// +---+-------+
// |key|  value|
// +---+-------+
// |238|val_238|
// | 86| val_86|
// |311|val_311|
// ...// Aggregation queries are also supported.
sql("SELECT COUNT(*) FROM src").show()
// +--------+
// |count(1)|
// +--------+
// |    500 |
// +--------+// The results of SQL queries are themselves DataFrames and support all normal functions.
val sqlDF = sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key")// The items in DataFrames are of type Row, which allows you to access each column by ordinal.
val stringsDS = sqlDF.map {
case Row(key: Int, value: String) => s"Key: $key, Value: $value"
}
stringsDS.show()
// +--------------------+
// |               value|
// +--------------------+
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// ...// You can also use DataFrames to create temporary views within a SparkSession.
val recordsDF = spark.createDataFrame((1 to 100).map(i => Record(i, s"val_$i")))
recordsDF.createOrReplaceTempView("records")// Queries can then join DataFrame data with data stored in Hive.
sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show()
// +---+------+---+------+
// |key| value|key| value|
// +---+------+---+------+
// |  2| val_2|  2| val_2|
// |  4| val_4|  4| val_4|
// |  5| val_5|  5| val_5|

3.5.1 内嵌Hive应用

如果要使用内嵌的Hive,什么都不用做,直接用就可以了。 --conf : spark.sql.warehouse.dir=
在这里插入图片描述
注意:如果你使用的是内部的Hive,在Spark2.0之后,spark.sql.warehouse.dir用于指定数据仓库的地址,如果你需要是用HDFS作为路径,那么需要将core-site.xml和hdfs-site.xml 加入到Spark conf目录,否则只会创建master节点上的warehouse目录,查询时会出现文件找不到的问题,这是需要向使用HDFS,则需要将metastore删除,重启集群。

3.5.2 外部Hive应用

如果想连接外部已经部署好的Hive,需要通过以下几个步骤。
1)将Hive中的hive-site.xml拷贝或者软连接到Spark安装目录下的conf目录下。
2)打开spark shell,注意带上访问Hive元数据库的JDBC客户端
$ bin/spark-shell --master spark://hadoop102:7077 --jars mysql-connector-java-5.1.27-bin.jar

3.5.3 运行Spark SQL CLI

Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务。在Spark目录下执行如下命令启动Spark SQL CLI:
./bin/spark-sql
配置Hive需要替换 conf/ 下的 hive-site.xml 。
// ±--------------±—+

4、 Spark SQL实战

4.1 数据说明

数据集是货品交易数据集。

在这里插入图片描述
每个订单可能包含多个货品,每个订单可以产生多次交易,不同的货品有不同的单价。

4.2 加载数据

tbStock:
scala> case class tbStock(ordernumber:String,locationid:String,dateid:String) extends Serializable
defined class tbStockscala> val tbStockRdd = spark.sparkContext.textFile("tbStock.txt")
tbStockRdd: org.apache.spark.rdd.RDD[String] = tbStock.txt MapPartitionsRDD[1] at textFile at <console>:23scala> val tbStockDS = tbStockRdd.map(_.split(",")).map(attr=>tbStock(attr(0),attr(1),attr(2))).toDS
tbStockDS: org.apache.spark.sql.Dataset[tbStock] = [ordernumber: string, locationid: string ... 1 more field]scala> tbStockDS.show()
+------------+----------+---------+
| ordernumber|locationid|   dataid|
+------------+----------+---------+
|BYSL00000893|      ZHAO|2007-8-23|
|BYSL00000897|      ZHAO|2007-8-24|
|BYSL00000898|      ZHAO|2007-8-25|
|BYSL00000899|      ZHAO|2007-8-26|
|BYSL00000900|      ZHAO|2007-8-26|
|BYSL00000901|      ZHAO|2007-8-27|
|BYSL00000902|      ZHAO|2007-8-27|
|BYSL00000904|      ZHAO|2007-8-28|
|BYSL00000905|      ZHAO|2007-8-28|
|BYSL00000906|      ZHAO|2007-8-28|
|BYSL00000907|      ZHAO|2007-8-29|
|BYSL00000908|      ZHAO|2007-8-30|
|BYSL00000909|      ZHAO| 2007-9-1|
|BYSL00000910|      ZHAO| 2007-9-1|
|BYSL00000911|      ZHAO|2007-8-31|
|BYSL00000912|      ZHAO| 2007-9-2|
|BYSL00000913|      ZHAO| 2007-9-3|
|BYSL00000914|      ZHAO| 2007-9-3|
|BYSL00000915|      ZHAO| 2007-9-4|
|BYSL00000916|      ZHAO| 2007-9-4|
+------------+----------+---------+
only showing top 20 rowstbStockDetail:
scala> case class tbStockDetail(ordernumber:String, rownum:Int, itemid:String, number:Int, price:Double, amount:Double) extends Serializable
defined class tbStockDetailscala> val tbStockDetailRdd = spark.sparkContext.textFile("tbStockDetail.txt")
tbStockDetailRdd: org.apache.spark.rdd.RDD[String] = tbStockDetail.txt MapPartitionsRDD[13] at textFile at <console>:23scala> val tbStockDetailDS = tbStockDetailRdd.map(_.split(",")).map(attr=> tbStockDetail(attr(0),attr(1).trim().toInt,attr(2),attr(3).trim().toInt,attr(4).trim().toDouble, attr(5).trim().toDouble)).toDS
tbStockDetailDS: org.apache.spark.sql.Dataset[tbStockDetail] = [ordernumber: string, rownum: int ... 4 more fields]scala> tbStockDetailDS.show()
+------------+------+--------------+------+-----+------+
| ordernumber|rownum|        itemid|number|price|amount|
+------------+------+--------------+------+-----+------+
|BYSL00000893|     0|FS527258160501|    -1|268.0|-268.0|
|BYSL00000893|     1|FS527258169701|     1|268.0| 268.0|
|BYSL00000893|     2|FS527230163001|     1|198.0| 198.0|
|BYSL00000893|     3|24627209125406|     1|298.0| 298.0|
|BYSL00000893|     4|K9527220210202|     1|120.0| 120.0|
|BYSL00000893|     5|01527291670102|     1|268.0| 268.0|
|BYSL00000893|     6|QY527271800242|     1|158.0| 158.0|
|BYSL00000893|     7|ST040000010000|     8|  0.0|   0.0|
|BYSL00000897|     0|04527200711305|     1|198.0| 198.0|
|BYSL00000897|     1|MY627234650201|     1|120.0| 120.0|
|BYSL00000897|     2|01227111791001|     1|249.0| 249.0|
|BYSL00000897|     3|MY627234610402|     1|120.0| 120.0|
|BYSL00000897|     4|01527282681202|     1|268.0| 268.0|
|BYSL00000897|     5|84126182820102|     1|158.0| 158.0|
|BYSL00000897|     6|K9127105010402|     1|239.0| 239.0|
|BYSL00000897|     7|QY127175210405|     1|199.0| 199.0|
|BYSL00000897|     8|24127151630206|     1|299.0| 299.0|
|BYSL00000897|     9|G1126101350002|     1|158.0| 158.0|
|BYSL00000897|    10|FS527258160501|     1|198.0| 198.0|
|BYSL00000897|    11|ST040000010000|    13|  0.0|   0.0|
+------------+------+--------------+------+-----+------+
only showing top 20 rowstbDate:
scala> case class tbDate(dateid:String, years:Int, theyear:Int, month:Int, day:Int, weekday:Int, week:Int, quarter:Int, period:Int, halfmonth:Int) extends Serializable
defined class tbDatescala> val tbDateRdd = spark.sparkContext.textFile("tbDate.txt")
tbDateRdd: org.apache.spark.rdd.RDD[String] = tbDate.txt MapPartitionsRDD[20] at textFile at <console>:23scala> val tbDateDS = tbDateRdd.map(_.split(",")).map(attr=> tbDate(attr(0),attr(1).trim().toInt, attr(2).trim().toInt,attr(3).trim().toInt, attr(4).trim().toInt, attr(5).trim().toInt, attr(6).trim().toInt, attr(7).trim().toInt, attr(8).trim().toInt, attr(9).trim().toInt)).toDS
tbDateDS: org.apache.spark.sql.Dataset[tbDate] = [dateid: string, years: int ... 8 more fields]scala> tbDateDS.show()
+---------+------+-------+-----+---+-------+----+-------+------+---------+
|   dateid| years|theyear|month|day|weekday|week|quarter|period|halfmonth|
+---------+------+-------+-----+---+-------+----+-------+------+---------+
| 2003-1-1|200301|   2003|    1|  1|      3|   1|      1|     1|        1|
| 2003-1-2|200301|   2003|    1|  2|      4|   1|      1|     1|        1|
| 2003-1-3|200301|   2003|    1|  3|      5|   1|      1|     1|        1|
| 2003-1-4|200301|   2003|    1|  4|      6|   1|      1|     1|        1|
| 2003-1-5|200301|   2003|    1|  5|      7|   1|      1|     1|        1|
| 2003-1-6|200301|   2003|    1|  6|      1|   2|      1|     1|        1|
| 2003-1-7|200301|   2003|    1|  7|      2|   2|      1|     1|        1|
| 2003-1-8|200301|   2003|    1|  8|      3|   2|      1|     1|        1|
| 2003-1-9|200301|   2003|    1|  9|      4|   2|      1|     1|        1|
|2003-1-10|200301|   2003|    1| 10|      5|   2|      1|     1|        1|
|2003-1-11|200301|   2003|    1| 11|      6|   2|      1|     2|        1|
|2003-1-12|200301|   2003|    1| 12|      7|   2|      1|     2|        1|
|2003-1-13|200301|   2003|    1| 13|      1|   3|      1|     2|        1|
|2003-1-14|200301|   2003|    1| 14|      2|   3|      1|     2|        1|
|2003-1-15|200301|   2003|    1| 15|      3|   3|      1|     2|        1|
|2003-1-16|200301|   2003|    1| 16|      4|   3|      1|     2|        2|
|2003-1-17|200301|   2003|    1| 17|      5|   3|      1|     2|        2|
|2003-1-18|200301|   2003|    1| 18|      6|   3|      1|     2|        2|
|2003-1-19|200301|   2003|    1| 19|      7|   3|      1|     2|        2|
|2003-1-20|200301|   2003|    1| 20|      1|   4|      1|     2|        2|
+---------+------+-------+-----+---+-------+----+-------+------+---------+
only showing top 20 rows
注册表:
scala> tbStockDS.createOrReplaceTempView("tbStock")scala> tbDateDS.createOrReplaceTempView("tbDate")scala> tbStockDetailDS.createOrReplaceTempView("tbStockDetail")

4.3 计算所有订单中每年的销售单数、销售总额

统计所有订单中每年的销售单数、销售总额
三个表连接后以count(distinct a.ordernumber)计销售单数,sum(b.amount)计销售总额
在这里插入图片描述

SELECT c.theyear, COUNT(DISTINCT a.ordernumber), SUM(b.amount)
FROM tbStock aJOIN tbStockDetail b ON a.ordernumber = b.ordernumberJOIN tbDate c ON a.dateid = c.dateid
GROUP BY c.theyear
ORDER BY c.theyearspark.sql("SELECT c.theyear, COUNT(DISTINCT a.ordernumber), SUM(b.amount) FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear ORDER BY c.theyear").show
结果如下:
+-------+---------------------------+--------------------+                      
|theyear|count(DISTINCT ordernumber)|         sum(amount)|
+-------+---------------------------+--------------------+
|   2004|                       	  1094|   3268115.499199999|
|   2005|                       	  3828|1.3257564149999991E7|
|   2006|                      	  3772|1.3680982900000006E7|
|   2007|                   	      4885|1.6719354559999993E7|
|   2008|                    	      4861| 1.467429530000001E7|
|   2009|                            2619|   6323697.189999999|
|   2010|                              94|  210949.65999999997|
+-------+---------------------------+--------------------+

4.4 计算所有订单每年最大金额订单的销售额

目标:统计每年最大金额订单的销售额:

在这里插入图片描述
1)统计每年,每个订单一共有多少销售额

SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount
FROM tbStock aJOIN tbStockDetail b ON a.ordernumber = b.ordernumber
GROUP BY a.dateid, a.ordernumberspark.sql("SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber GROUP BY a.dateid, a.ordernumber").show
结果如下:
+----------+------------+------------------+
|    dateid| ordernumber|       SumOfAmount|
+----------+------------+------------------+
|  2008-4-9|BYSL00001175|             350.0|
| 2008-5-12|BYSL00001214|             592.0|
| 2008-7-29|BYSL00011545|            2064.0|
|  2008-9-5|DGSL00012056|            1782.0|
| 2008-12-1|DGSL00013189|             318.0|
|2008-12-18|DGSL00013374|             963.0|
|  2009-8-9|DGSL00015223|            4655.0|
| 2009-10-5|DGSL00015585|            3445.0|
| 2010-1-14|DGSL00016374|            2934.0|
| 2006-9-24|GCSL00000673|3556.1000000000004|
| 2007-1-26|GCSL00000826| 9375.199999999999|
| 2007-5-24|GCSL00001020| 6171.300000000002|
|  2008-1-8|GCSL00001217|            7601.6|
| 2008-9-16|GCSL00012204|            2018.0|
| 2006-7-27|GHSL00000603|            2835.6|
|2006-11-15|GHSL00000741|           3951.94|
|  2007-6-6|GHSL00001149|               0.0|
| 2008-4-18|GHSL00001631|              12.0|
| 2008-7-15|GHSL00011367|             578.0|
|  2009-5-8|GHSL00014637|            1797.6|
+----------+------------+------------------+
2)以上一步查询结果为基础表,和表tbDate使用dateid join,求出每年最大金额订单的销售额
SELECT theyear, MAX(c.SumOfAmount) AS SumOfAmount
FROM (SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmountFROM tbStock aJOIN tbStockDetail b ON a.ordernumber = b.ordernumberGROUP BY a.dateid, a.ordernumber) cJOIN tbDate d ON c.dateid = d.dateid
GROUP BY theyear
ORDER BY theyear DESCspark.sql("SELECT theyear, MAX(c.SumOfAmount) AS SumOfAmount FROM (SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber GROUP BY a.dateid, a.ordernumber ) c JOIN tbDate d ON c.dateid = d.dateid GROUP BY theyear ORDER BY theyear DESC").show
结果如下:
+-------+------------------+                                                    
|theyear|       SumOfAmount|
+-------+------------------+
|   2010|13065.280000000002|
|   2009|25813.200000000008|
|   2008|           55828.0|
|   2007|          159126.0|
|   2006|           36124.0|
|   2005|38186.399999999994|
|   2004| 23656.79999999997|
+-------+------------------+

4.5 计算所有订单中每年最畅销货品

目标:统计每年最畅销货品(哪个货品销售额amount在当年最高,哪个就是最畅销货品)
在这里插入图片描述

第一步、求出每年每个货品的销售额

SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount
FROM tbStock aJOIN tbStockDetail b ON a.ordernumber = b.ordernumberJOIN tbDate c ON a.dateid = c.dateid
GROUP BY c.theyear, b.itemidspark.sql("SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid").show
结果如下:
+-------+--------------+------------------+                                     
|theyear|        itemid|       SumOfAmount|
+-------+--------------+------------------+
|   2004|43824480810202|           4474.72|
|   2006|YA214325360101|             556.0|
|   2006|BT624202120102|             360.0|
|   2007|AK215371910101|24603.639999999992|
|   2008|AK216169120201|29144.199999999997|
|   2008|YL526228310106|16073.099999999999|
|   2009|KM529221590106| 5124.800000000001|
|   2004|HT224181030201|2898.6000000000004|
|   2004|SG224308320206|           7307.06|
|   2007|04426485470201|14468.800000000001|
|   2007|84326389100102|           9134.11|
|   2007|B4426438020201|           19884.2|
|   2008|YL427437320101|12331.799999999997|
|   2008|MH215303070101|            8827.0|
|   2009|YL629228280106|           12698.4|
|   2009|BL529298020602|            2415.8|
|   2009|F5127363019006|             614.0|
|   2005|24425428180101|          34890.74|
|   2007|YA214127270101|             240.0|
|   2007|MY127134830105|          11099.92|
+-------+--------------+------------------+
第二步、在第一步的基础上,统计每年单个货品中的最大金额
SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount
FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmountFROM tbStock aJOIN tbStockDetail b ON a.ordernumber = b.ordernumberJOIN tbDate c ON a.dateid = c.dateidGROUP BY c.theyear, b.itemid) d
GROUP BY d.theyearspark.sql("SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) d GROUP BY d.theyear").show
结果如下:
+-------+------------------+                                                    
|theyear|       MaxOfAmount|
+-------+------------------+
|   2007|           70225.1|
|   2006|          113720.6|
|   2004|53401.759999999995|
|   2009|           30029.2|
|   2005|56627.329999999994|
|   2010|            4494.0|
|   2008| 98003.60000000003|
+-------+------------------+
第三步、用最大销售额和统计好的每个货品的销售额join,以及用年join,集合得到最畅销货品那一行信息
SELECT DISTINCT e.theyear, e.itemid, f.MaxOfAmount
FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmountFROM tbStock aJOIN tbStockDetail b ON a.ordernumber = b.ordernumberJOIN tbDate c ON a.dateid = c.dateidGROUP BY c.theyear, b.itemid) eJOIN (SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmountFROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmountFROM tbStock aJOIN tbStockDetail b ON a.ordernumber = b.ordernumberJOIN tbDate c ON a.dateid = c.dateidGROUP BY c.theyear, b.itemid) dGROUP BY d.theyear) f ON e.theyear = f.theyearAND e.SumOfAmount = f.MaxOfAmount
ORDER BY e.theyearspark.sql("SELECT DISTINCT e.theyear, e.itemid, f.maxofamount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS sumofamount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) e JOIN (SELECT d.theyear, MAX(d.sumofamount) AS maxofamount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS sumofamount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) d GROUP BY d.theyear ) f ON e.theyear = f.theyear AND e.sumofamount = f.maxofamount ORDER BY e.theyear").show
结果如下:
+-------+--------------+------------------+                                     
|theyear|        itemid|       maxofamount|
+-------+--------------+------------------+
|   2004|JY424420810101|53401.759999999995|
|   2005|24124118880102|56627.329999999994|
|   2006|JY425468460101|          113720.6|
|   2007|JY425468460101|           70225.1|
|   2008|E2628204040101| 98003.60000000003|
|   2009|YL327439080102|           30029.2|
|   2010|SQ429425090101|            4494.0|
+-------+--------------+------------------+

相关文章:

SparkSQL基础解析(三)

1、 Spark SQL概述 1.1什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块&#xff0c;它提供了2个编程抽象&#xff1a;DataFrame和 DataSet&#xff0c;并且作为分布式SQL查询引擎的作用。 我们已经学习了Hive&#xff0c;它是将Hive SQL转换成MapReduce然后提…...

gz-hamonic 安装提示缺少许多依赖无法安装

在软件更新源中增加gz-hamonic的软件源&#xff0c; 点击添加&#xff0c;在输入框中填入如下语句&#xff1a; deb http://packages.osrfoundation.org/ubuntu jammy main 如图所示&#xff1a; 然后执行 sudo apt -get install gz-hamonic即可安装。 如下图 在终端中输入…...

新版Edge卸载

新版Edge卸载&#xff1a;步骤与注意事项 随着Windows 10的发布&#xff0c;微软推出了新版Edge浏览器。虽然新版Edge浏览器具有许多优秀的新功能和改进&#xff0c;但有时您可能希望卸载它并使用其他浏览器。在本文中&#xff0c;我们将向您介绍如何卸载新版Edge浏览器&#…...

Ansibe自动化基础

目录 一.Ansibe自动化概述 1.特点 2.工作特性 3.应用场合 二.ansibe安装即相关文件说明 1.安装 2.相关文件 3.主配置文件内容详解 4.ansibe运行机制 三.ansibe管理节点命令 1.Ansibe 四.主机组配置 1.基本配置 第一种&#xff1a; 第二种&#xff1a; 2.设置SSH…...

2023 年中国高校大数据挑战赛赛题B DNA 存储中的序列聚类与比对-解析与参考代码

题目背景&#xff1a;目前往往需要对测序后的序列进行聚类与比对。其中聚类指的是将测序序列聚类以判断原始序列有多少条&#xff0c;聚类后相同类的序列定义为一个簇。比对则是指在聚类基础上对一个簇内的序列进行比对进而输出一条最有 可能的正确序列。通过聚类与比对将会极大…...

决策树--分类决策树

1、介绍 ① 定义 分类决策树通过树形结构来模拟决策过程&#xff0c;决策树由结点和有向边组成。结点有两种类型&#xff1a;内部结 点和叶结点。内部结点表示一个特征或属性&#xff0c;叶子节点表示一个类。 ② 生成过程 用决策树分类&#xff0c;从根结点开始&#xff…...

【2024/1/5】

2024/1/5周报 本周开展工作下周工作计划 本周开展工作 首先的话就是跟大家汇报一下上一个项目的进度&#xff0c;那因为一些我这边的不可控的因素暂时进行搁置&#xff0c;随后的话还是需要在进行做的。 因此我们最近在做一个web端的项目&#xff0c;这个项目的具体的就不汇报…...

CNN——VGG

1.VGG简介 论文下载地址&#xff1a;https://arxiv.org/pdf/1409.1556.pdf VGGNet 是由牛津大学视觉几何小组&#xff08;Visual Geometry Group, VGG&#xff09;提出的一种深层卷积网络结构&#xff0c;他们以 7.32% 的错误率赢得了 2014 年 ILSVRC 分类任务的亚军&#xff…...

深入理解Java中的多线程编程与并发控制

当谈论到 Java 编程语言时&#xff0c;多线程编程和并发控制是其中最重要的话题之一。Java 在多线程领域有着强大的支持和丰富的工具集&#xff0c;允许开发人员利用并发性来提高程序性能和效率。本文将深入探讨 Java 中的多线程编程和并发控制&#xff0c;包括线程的创建、同步…...

提供10个mysql的实例和思路

学生信息管理系统 学生表&#xff08;id, name, gender, age, class_id&#xff09;班级表&#xff08;id, name&#xff09;思路&#xff1a;通过学生表和班级表进行关联&#xff0c;可以实现学生信息的查询、添加、修改、删除等操作。 订单管理系统 订单表&#xff08;id, us…...

FPGA项目(14)——基于FPGA的数字秒表设计

1.功能设计 设计内容及要求: 1.秒表最大计时范围为99分59. 99秒 2.6位数码管显示&#xff0c;分辨率为0.01秒 3.具有清零、启动计时、暂停及继续计时等功能 4.控制操作按键不超过二个。 2.设计思路 所采用的时钟为50M&#xff0c;先对时钟进行分频&#xff0c;得到100HZ频率…...

浅谈指数移动平均(ema)

经常在各种代码中看到指数移动平均(比如我专注的网络传输领域)&#xff0c;但却不曾想到它就是诠释世界的方法&#xff0c;我们每个人都在被这种方式 “平均”… 今天说说指数移动平均(或移动指数平均&#xff0c;Exponential Moving Average)。 能查到的资料都侧重于其数学形…...

1-并发编程线程基础

什么是线程 在讨论什么是线程前有必要先说下什么是进程&#xff0c;因为线程是进程中的一个实体&#xff0c;线程本身是不会独立存在的。 进程是代码在数据集合上的一次运行活动&#xff0c;是系统进行资源分配和调度的基本单位&#xff0c;线程则是进程的一个执行路径&#…...

vue中动态出来返回的时间秒数,在多少范围显示多少秒,多少范围显示分,小时等等

在Vue中&#xff0c;你可以使用计算属性&#xff08;computed property&#xff09;或过滤器&#xff08;filter&#xff09;来根据动态返回的时间秒数来显示不同的时间单位&#xff0c;比如秒、分、小时等等。 下面是一个使用计算属性的示例&#xff1a; <template>&l…...

English: go through customs

文章目录 常见单词机场指示登机和中转降落以及公共服务签证篇出/入境卡篇入境英语会话篇 常见单词 customs: 海关 (kʌstəmz)cash: 现金 (kʃ)passport: 护照 (pspɔːt)luggage/baggage: 行李 (lʌɡɪdʒ/ˈbɡɪdʒ)Exchange: 换钱 (ɪks’tʃeɪndʒ)airport: 飞机场 (ɛ…...

Nginx 多端口部署多站点

目录 1.进行nginx.conf 2.复制粘贴 3.修改端口及站点根目录 4. 网站上传 1.进行nginx.conf 在 nginx 主要配置文件 nginx.conf 中&#xff0c;server 是负责一个网站配置的&#xff0c;我们想要多个端口访问的话&#xff0c;可以复制多个 server 先进入到 nginx.conf 中 …...

从零开始配置kali2023环境:配置jupyter的多内核环境

在kali2023上面尝试用anaconda3&#xff0c;anaconda2安装实现配置jupyter的多内核环境时出现各种问题&#xff0c;现在可以通过镜像方式解决 1. 搜索镜像 ┌──(holyeyes㉿kali2023)-[~] └─$ sudo docker search anaconda ┌──(holyeyes㉿kali2023)-[~] └─$ sudo …...

Dart调用JS对10000条定位数据滤波

使用Dart调用JS&#xff0c;还是为了练习跨语言调用&#xff1b; 一、编写对应的JS代码 平时在开发时不推荐将算法放在JS里&#xff0c;我这里是简单的做一下数据过滤&#xff1b; 首先生成一些随机定位数据&#xff0c;在实际开发中可以使用真实数据&#xff1b; // 随机定…...

大模型应用实践:AIGC探索之旅

随着OpenAI推出ChatGPT&#xff0c;AIGC迎来了前所未有的发展机遇。大模型技术已经不仅仅是技术趋势&#xff0c;而是深刻地塑造着我们交流、工作和思考的方式。 本文介绍了笔者理解的大模型和AIGC的密切联系&#xff0c;从历史沿革到实际应用案例&#xff0c;再到面临的技术挑…...

【.NET Core】异步编程模式

【.NET Core】异步编程模式 文章目录 【.NET Core】异步编程模式一、概述二、基于任务的异步模式&#xff08;TAP&#xff09;2.1 TAP模式命名、参数和返回类型2.2 TAP初始化异步操2.3 TAP如何编译2.4 手动生成TAP方法2.5 混合方法实现TAP2.6 TAP中Await挂起执行2.7 TAP中使用Y…...

macOS通过外置驱动器备份数据

通过外置驱动器备份数据&#xff08;谨慎操作&#xff09; 1.将外置驱动器连接到您的 Mac。驱动器容量应等于或大于您当前的启动磁盘。驱动器还应该是您可以抹掉的。 2.使用 macOS 恢复功能 抹掉外置驱动器&#xff0c;然后将 macOS 安装 到外置驱动器上。确保您选择的外置驱动…...

rtsp解析视频流

这里先说一下 播放rtsp 视频流&#xff0c;尽量让后端转换一下其他格式的流进行播放。因为rtsp的流需要flash支持&#xff0c;现在很多浏览器不支持flash。 先说一下这里我没有用video-player插件&#xff0c;因为它需要用flash ,在一个是我下载flash后&#xff0c;还是无法播放…...

【物联网】手把手完整实现STM32+ESP8266+MQTT+阿里云+APP应用——第3节-云产品流转配置

&#x1f31f;博主领域&#xff1a;嵌入式领域&人工智能&软件开发 本节目标&#xff1a;本节目标是进行云产品流转配置为后面实际的手机APP的接入做铺垫。云产品流转配置的目的是为了后面能够让后面实际做出来的手机APP可以控制STM32/MCU&#xff0c;STM32/MCU可以将数…...

Spring Cloud Config相关问题及答案(2024)

1、什么是 Spring Cloud Config&#xff0c;它解决了哪些问题&#xff1f; Spring Cloud Config 是一个为微服务架构提供集中化外部配置支持的项目。它是构建在 Spring Cloud 生态系统之上&#xff0c;利用 Spring Boot 的开发便利性&#xff0c;简化了分布式系统中的配置管理…...

【Azure 架构师学习笔记】- Azure Databricks (4) - 使用Azure Key Vault 管理ADB Secret

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (3) - 再次认识DataBricks 前言 Azure Databricks有access token&#xff0c;是具有ADB内部最高权限的token。在云环境中这些高级别权限的sec…...

[每周一更]-(第50期):Go的垃圾回收GC

参考文章&#xff1a; https://juejin.cn/post/7111515970669117447https://draveness.me/golang/docs/part3-runtime/ch07-memory/golang-garbage-collector/https://colobu.com/2022/07/16/A-Guide-to-the-Go-Garbage-Collector/https://liangyaopei.github.io/2021/01/02/g…...

【嵌入式学习笔记-01】什么是UC,操作系统历史介绍,计算机系统分层,环境变量(PATH),错误

【嵌入式学习笔记】什么是UC&#xff0c;操作系统历史介绍&#xff0c;计算机系统分层&#xff0c;环境变量&#xff08;PATH&#xff09;&#xff0c;错误 文章目录 什么是UC?计算机系统分层什么是操作系统&#xff1f; 环境变量什么是环境变量&#xff1f;环境变量的添加&am…...

【动态规划】LeetCode-10. 正则表达式匹配

10. 正则表达式匹配。 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。 ‘.’ 匹配任意单个字符‘*’ 匹配零个或多个前面的那一个元素 所谓匹配&#xff0c;是要涵盖 整个 字符串 s的&#xff0c;而不是部分字符串。 …...

lenovo联想拯救者8.8英寸掌上游戏机Legion Go 8APU1(83E1)原装出厂Windows11预装系统

链接&#xff1a;https://pan.baidu.com/s/1d586XWXcAWVxlLyV2Oku7Q?pwdd74t 提取码&#xff1a;d74t 系统自带所有驱动、出厂主题壁纸、Office办公软件、联想电脑管家等预装程序 所需要工具&#xff1a;16G或以上的U盘 文件格式&#xff1a;ISO 文件大小&#xff1a;…...

经典目标检测YOLO系列(一)复现YOLOV1(4)VOC2007数据集的读取及预处理

经典目标检测YOLO系列(一)复现YOLOV1(4)VOC2007数据集的读取及预处理 之前&#xff0c;我们依据《YOLO目标检测》(ISBN:9787115627094)一书&#xff0c;提出了新的YOLOV1架构&#xff0c;并解决前向推理过程中的两个问题&#xff0c;继续按照此书进行YOLOV1的复现。 经典目标检…...

做家纺的网站/2022年国际十大新闻

2019独角兽企业重金招聘Python工程师标准>>> 如果在移动端的话&#xff0c;由于移动端操作相对比较单一&#xff0c;因此loading形式也比较简单。通常做法是在请求发出时页面正中位置弹出一个loading的 toast&#xff0c;请求结束隐藏 toast 。 这种做法大家接受度比…...

临朐网站制作/企业如何做网络推广

作者&#xff1a;王勐链接&#xff1a;https://www.zhihu.com/question/23995189/answer/35429905来源&#xff1a;知乎著作权归作者所有。商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处。动态规划的本质不在于是递推或是递归&#xff0c;也不需要纠结是不是内存…...

莆田做网站建设/虞城seo代理地址

趁着公司不忙&#xff0c;抓紧充充电&#xff0c;开始可能会写的不好&#xff0c;但是每写一个都是一点进步&#xff0c;哈哈&#xff0c;加油 用js实现选项卡切换 1.获取元素 2.初始状态 3.通过循环清空元素状态 4.点击操作以及对应的内容切换 5.自定义索引&#xff08;通过HT…...

长春专业做网站公司/阿里巴巴指数查询

场景&#xff1a; 客户端A、B&#xff0c;A向B发送json字符串后紧接着发送文件&#xff0c;B接收到文件后才返回消息。 环境&#xff1a;android、使用的是原始的write 和read &#xff08;若使用的是writeUTF不会出现此问题。&#xff09;需要个IOS对接 原因&#xff1a;采用连…...

网站移动端怎么做/宁波seo排名优化哪家好

JAVA之旅(三)——数组&#xff0c;堆栈内存结构&#xff0c;静态初始化&#xff0c;遍历&#xff0c;最值&#xff0c;选择/冒泡排序&#xff0c;二维数组&#xff0c;面向对象思想我们继续JAVA之旅一.数组1.概念数组就是同一种类型数据的集合&#xff0c;就是一个容器数组的好…...

嘉兴做网站哪家好/今日头条郑州头条新闻

前言iOS中&#xff0c;当我们需要解析xml或html时&#xff0c;我们可以使用libxml2来进行解析。但由于libxml2的api设计比较繁琐&#xff0c;使用起来并不方便。Hpple则是基于libxml2的oc库&#xff0c;使我们可以用其方便地进行xml或html的解析。使用方法我们先来看看&#xf…...