当前位置: 首页 > news >正文

算法通关村第二十关-黄金挑战图的常见算法

大家好我是苏麟 , 今天聊聊图的常见算法 .

图里的算法是很多的,这里我们介绍一些常见的图算法。这些算法一般都比较复杂,我们这里介绍这些算法的基本含义,适合面试的时候装*,如果手写,那就不用啦。

图分析算法,以图论为驱动,进行算法优化,结合应用工程,业务形态研究,不同领域场景模拟不同网络结构,通过自由刻画网络图形关系,验证结构合理性,如边的有向和无向及权重,从而辅助分析图形关系、图结构分析、网络结构分析等研究

1.最小生成树(Minimum Spanning Tree)

主要是三种算法: Prim算法、Kruskal算法、Sollin (Boruvka)算法

(1) Prim算法,普里姆算法,图论中的一种算法,基于一种贪心的思想,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语: Vertex(graph theory) 且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语: Voitech Jarnik)发现:并在1957年由美国计算机科学家罗伯特·普里姆英语: Robert C.Prim) 独立发现1959年,艾效格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆 - 亚尔尼克算法。Prime算法本质是动态规划

(2) Thorup 算法
对于平面有向图,一种更快的方法是如Mikkel Thorup在2004年所提出的算法。计算复杂度为,其中为增长速度非常缓慢的inverse-Ackermann函数。该算法还可以提供近似最短路径距离以及路由信息。

(3) Kameda算法
如果图形是平面的,非循环的,并且还表现出以下附加属性,则可以使用由1975年的T.Kameda 提出的更快的预处理方法: 所有0-indegree和所有0-outdegree顶点出现 (通常假设为外面),并且可以将该面的边界分割为两个部分,使得所有0个不等的顶点出现在一个部分上,并目所有的0度外的顶点出现在另一个部分上 (即两种类型的顶点不交替)。

2.连通结构 (Connected Components)

无向图G的极大连通子图称为G的连通分量( Connected Component)。任何连通图的连通分量只有一个,即是其自身,非连通的无向图有多个连通分量。这种结构称作连通结构。

3.双联通结构 (Biconnected Components)

任意两点之间都有多于一条的路径,则称为双连通图,也叫双连通分量,双连通分量的术语是biconnectedcomponents,简称为BC,这种结构为双联通结构。任何一对顶点之间至少存在有两条路径,在删去某个顶点及与该顶点相关联的边时,也不破坏图的连通性。对于无向图的一个子图是双连通的,则称为双连通子图。极大的双连通子图称为双连通分量。一个无向图可以有多个双连通分量,一个点也算是双连通分量。

4.强联通结构 (Strongly Connected Components)

有向图的极大强连通子图称为的强连通分量,强连通图只有一个强连通分量,即是其自身。非强连通的有向图有多个强连通分量。如果任意两点之间都能到达,则称为强连通图。如果对于有向图的一个子图是强连通的,则称为强连通子图,这种结构称为强联通结构。

5.可达性 (Reachability)

在图论中,可达性是指在图中从一个顶点到另一个顶点的容易程度。在无向图中,可以通过识别图的连接分量来确定所有顶点对之间的可达性。我们的产品解决方案,通过定义一个实体为原点,通过原点链接计算出图中有向可达路径范围和无向可达路径范围,无向可达范围一般大于有向可达。

常用算法为: Floyd-Warshall,Thorup,Kameda这三种算法

(1) Floyd-Warshall算法
Floyd-Warshall算法(Floyd-Warshall algorithm) 是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Flovd-Warshal算法的时间复杂度为O(N)空间复杂度为O(N*N)。

(2) Thorup 算法
对于平面有向图,一种更快的方法是如Mikkel Thorup在2004年所提出的算法。计算复杂度为,其中为增长速度非常缓慢的inverse-Ackermann函数。该算法还可以提供近似最短路径距离以及路由信息。

(3) Kameda算法
如果图形是平面的,非循环的,并且还表现出以下附加属性,则可以使用由1975年的T.Kameda 提出的更快的预处理方法: 所有0-indegree和所有0-outdegree顶点出现 (通常假设为外面),并且可以将该面的边界分割为两人部分,使得所有0个不等的顶点出现在一个部分上,并且所有的0度外的顶点出现在另一个部分上 (即两种类型的顶点不交替)。

6.K核算法(K-Core)

k-Core算法是一种经典图算法,用于寻找一个图中符合指定核心度的顶点的集合,即要求每个顶点至少与该子图中的其他k个顶点相关联。k-Core算法用于寻找一个图中符合指定核心度的顶点的集合,求每个顶点至少与该子图中的其他k个顶点相关联。这个我们提供1-5Core的图计算,在图谱中可以分别找出1-5Core的团结果发现,并可以用于子图分类。适用于图推演、生物学、社交网络、金融风控等场景。

7.全路径 (ALL Paths)

全路径,就是网络图中的路径集合。分有向和无向,有向路径通过源到目标方向不可逆,无向路径通过源点和目标之间产生的图关系。在同一图形中,无向路径远多于有向。源点,是设定的初始点,目标是设置的需要通过源点要到达的点。有几种基本情况,一是源点和目标点同一设置,即自循环,有向情况下,自循环就是1个节点。二是无向情况下,自循环和有向情况一样,但二个节点以上则会多种混合循环体。产品可以通过设置源点和目标,进行分析源点和目标之间产生的有向无向关系。

8.链结构 (ALL Chains)

链结构,包含循环或路径,结构从图形结构树的基本循环集派生而来。通过优先搜索图形结构,把图中链分解成一组循环或路径,从原点出发有向或无向远离根原点后又回到原点则为基本环。如果没有回到原点则为一条路径而不是一个环。每个循环或路径称为链。这种结构称为链结构。

9.Single Source

Single Source,称为单源,意为只有一个源为基础。首先是不允许有负环,单源实体到所有实体的最短路径构成一棵最短路径树。通过单源路径算法可以通过选中实体定义源,找出以这个实体源为中心或起始点的图结果.

10.环结构 (Cycles)

环结构,即网络的循环结构,通过有向或无向路径最后,形成回到起点闭环。可以理解为形成一个“圈”。网络的基础循环是循环的最小集合,使得网络中的任何循环都可以写成基础中的循环总和。循环基数很有用,如单循环(自循环)、双向循环(双实体双向关系)、三角循环(三个实体循环路径) 、四方循环(四个实体循环路径)五边形以此类推。


还有很多 , 就不一一列举了 , 感兴趣的同学自己查查相关资料 .

这期就到这里了 , 再见!

相关文章:

算法通关村第二十关-黄金挑战图的常见算法

大家好我是苏麟 , 今天聊聊图的常见算法 . 图里的算法是很多的,这里我们介绍一些常见的图算法。这些算法一般都比较复杂,我们这里介绍这些算法的基本含义,适合面试的时候装*,如果手写,那就不用啦。 图分析算法&#xf…...

服务器内存不足怎么办?会有什么影响?

服务器内存,也被称为RAM(Random Access Memory),是一种临时存储设备,用于临时存放正在运行的程序和数据。它是服务器上的超高速存储介质,可以快速读取和写入数据,提供给CPU进行实时计算和操作。…...

GPT实战系列-简单聊聊LangChain

GPT实战系列-简单聊聊LangChain LLM大模型相关文章: GPT实战系列-ChatGLM3本地部署CUDA111080Ti显卡24G实战方案 GPT实战系列-Baichuan2本地化部署实战方案 GPT实战系列-大话LLM大模型训练 GPT实战系列-探究GPT等大模型的文本生成 GPT实战系列-Baichuan2等大模…...

【读书笔记】《白帽子讲web安全》浏览器安全

目录 第二篇 客户端脚本安全 第2章 浏览器安全 2.1同源策略 2.2浏览器沙箱 2.3恶意网址拦截 2.4高速发展的浏览器安全 第二篇 客户端脚本安全 第2章 浏览器安全 近年来随着互联网的发展,人们发现浏览器才是互联网最大的入口,绝大多数用户使用互联…...

海外服务器2核2G/4G/8G和4核8G配置16M公网带宽优惠价格表

腾讯云海外服务器租用优惠价格表,2核2G10M带宽、2核4G12M、2核8G14M、4核8G16M配置可选,可以选择Linux操作系统或Linux系统,相比较Linux服务器价格要更优惠一些,腾讯云服务器网txyfwq.com分享腾讯云国外服务器租用配置报价&#x…...

Linux 编译安装 Nginx

目录 一、前言二、四种安装方式介绍三、本文安装方式:源码安装3.1、安装依赖库3.2、开始安装 Nginx3.3、Nginx 相关操作3.4、把 Nginx 注册成系统服务 四、结尾 一、前言 Nginx 是一款轻量级的 Web 服务器、[反向代理]服务器,由于它的内存占用少&#xf…...

Oracle文件自动“减肥”记

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…...

【csharp】抽象类与接口有哪些不同?什么时候应该使用抽象类?

抽象类与接口有哪些不同? 抽象类和接口是在面向对象编程中两个不同的概念,它们有一些重要的区别。以下是抽象类和接口的主要不同点: 抽象类(Abstract Class): 成员类型: 抽象类可以包含抽象方…...

最新-mybatis-plus 3.5分页插件配置

mybatis-plus 3.5分页插件配置 前提 1.项目不是springboot, 是以前的常规spring项目 2.mp 从3.2升级到3.5,升级后发现原本的分页竟然不起作用了,每次查询都是查出所有 前后配置对比 jar包对比 jsqlparser我这里单独引了包,因为版本太低…...

案例098:基于微信小程序的电子购物系统的设计与实现

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…...

亚信安慧AntDB数据库:数字化时代的数据库创新引领者

AntDB数据库以其卓越的创新能力,集中体现在融合统一与实时处理两大关键领域。作为一款服务全国超过10亿用户的分布式数据库,其独特之处在于长期积累的经验、多样性的支持能力、快速响应的数据处理速度以及卓越的系统稳定性。AntDB不仅仅是一个数据库系统…...

【MySQL】关于日期转换的方法

力扣题 1、题目地址 1853. 转换日期格式 2、模拟表 表: Days Column NameTypedaydate day 是这个表的主键。 3、要求 给定一个Days表,请你编写SQL查询语句,将Days表中的每一个日期转化为"day_name, month_name day, year"格式的字符串…...

Ubuntu 虚拟机挂接 Windows 目录

Windows 共享目录 首先 Windows 下共享目录 我这里偷懒直接直接 Everyone ,也可以指定用户啥的 Ubuntu 挂接 挂接命令,类似如下: sudo mount -o usernamefananchong,passwordxxxx,uid1000,gid1000,file_mode0644,dir_mode0755,dynperm //…...

机器学习模型可解释性的结果分析

模型的可解释性是机器学习领域的一个重要分支,随着 AI 应用范围的不断扩大,人们越来越不满足于模型的黑盒特性,与此同时,金融、自动驾驶等领域的法律法规也对模型的可解释性提出了更高的要求,在可解释 AI 一文中我们已…...

静态网页设计——环保网(HTML+CSS+JavaScript)(dw、sublime Text、webstorm、HBuilder X)

前言 声明:该文章只是做技术分享,若侵权请联系我删除。!! 感谢大佬的视频: https://www.bilibili.com/video/BV1BC4y1v7ZY/?vd_source5f425e0074a7f92921f53ab87712357b 使用技术:HTMLCSSJS(…...

【HarmonyOS】装饰器下的状态管理与页面路由跳转实现

从今天开始,博主将开设一门新的专栏用来讲解市面上比较热门的技术 “鸿蒙开发”,对于刚接触这项技术的小伙伴在学习鸿蒙开发之前,有必要先了解一下鸿蒙,从你的角度来讲,你认为什么是鸿蒙呢?它出现的意义又是…...

学习笔记——C++中数据的输入 cin

作用:用于从键盘中获取数据 关键字:cin 语法:cin>>变量 类型:C中数据的输入主要包含:整形(int)浮点型(float,double float),字符型&…...

Filter Options in Select Field

Filter Options in Select Field 假设有两个下拉字段State和City。邦有两个值卡纳塔克邦和马哈拉施特拉邦,城市有四个值,班加罗尔,迈索尔,孟买和浦那。如果希望根据State中选择的值过滤City中的选项,可以编写如下所示的…...

【React系列】Hook(二)高级使用

本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. Hook高级使用 1.1. useReducer 很多人看到useReducer的第一反应应该是redux的某个替代品,其实并不是…...

编程笔记 html5cssjs 018 HTML颜色

编程笔记 html5&css&js 018 HTML颜色 一、HTML 颜色二、HTML中设置颜色值三、颜色名称和颜色值 颜色是视觉中重要因素,尤其是处理人机界面中,更是要处理颜色设置和搭配。在网页中,提供了设置颜色的一些方案,需要我们认真学…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

JVM 内存结构 详解

内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: ​ 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...