当前位置: 首页 > news >正文

二分图

目录

二分图

染色法判定二分图

匈牙利算法


二分图

  • 二分图,又叫二部图,将所有点分成两个集合,使得所有边只出现在集合之间的点之间,而集合内部的点之间没有边。
  • 二分图当且仅当图中没有奇数环。只要图中环的边数没奇数个数的,它就是二分图。
  • 二分图可以是连通的,也可以是不连通的
  • 树一定二分图。

染色法判定二分图

题目如下:

如果判断一个图是不是二分图?

  • 开始对任意一未染色的顶点染色。
  • 判断其相邻的顶点中,若未染色则将其染上和相邻顶点不同的颜色。
  • 若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断。
  • bfs和dfs可以搞定!

解题代码:

#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 100010 * 2;
int e[N], ne[N], idx;//邻接表存储图
int h[N];
int color[N];//保存各个点的颜色,0 未染色,1 是红色,2 是黑色
int n, m;//点和边void add(int a, int b)//邻接表插入点和边
{e[idx] = b, ne[idx]= h[a], h[a] = idx++;
}bool dfs(int u, int c)//深度优先遍历,参数1:点的编号   参数2:要染的颜色
{color[u] = c;//u的点成 c 染色//遍历和 u 相邻的点for(int i = h[u]; i!= -1; i = ne[i]){int b = e[i];                 if(!color[b])//相邻的点没有颜色,则递归处理这个相邻点{if(!dfs(b, 3 - c)) return false;//(3 - 1 = 2, 如果 u 的颜色是2,则和 u 相邻的染成 1)//(3 - 2 = 1, 如果 u 的颜色是1,则和 u 相邻的染成 2)}else if(color[b] && color[b] != 3 - c)//如果已经染色,判断颜色是否为 3 - c{                                     return false;//如果不是,说明冲突,返回                   }}return true;
}int main()
{memset(h, -1, sizeof h);//初始化邻接表cin >> n >> m;for(int i = 1; i <= m; i++)//读入边{int a, b;cin >> a >> b;add(a, b), add(b, a);}for(int i = 1; i <= n; i++)//遍历点{if(!color[i])//如果没染色{//以没染色的点为起点进行dfs搜索if(!dfs(i, 1))//染色该点,并递归处理和它相邻的点{cout << "No" << endl;//出现矛盾,输出NO return 0;}}}cout << "Yes" << endl;//全部染色完成,没有矛盾,输出YESreturn 0;
}

算法板子:O(m+n),n表示点数,m表示边数

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{color[u] = c;for (int i = h[u]; i != -1; i = ne[i]){int j = e[i];if (color[j] == -1){if (!dfs(j, !c)) return false;}else if (color[j] == c) return false;}return true;
}bool check()
{memset(color, -1, sizeof color);bool flag = true;for (int i = 1; i <= n; i ++ )if (color[i] == -1)if (!dfs(i, 0)){flag = false;break;}return flag;
}

匈牙利算法

题目如下:

解题代码

#include <cstring>
#include <iostream>
#include <algorithm>using namespace std;const int N = 510, M = 100010;int n1, n2, m;
int h[N], e[M], ne[M], idx;
int match[N];
bool st[N];void add(int a, int b)
{e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}bool find(int x)
{for (int i = h[x]; i != -1; i = ne[i]){int j = e[i];if (!st[j]){st[j] = true;if (match[j] == 0 || find(match[j])){match[j] = x;return true;}}}return false;
}int main()
{scanf("%d%d%d", &n1, &n2, &m);memset(h, -1, sizeof h);while (m -- ){int a, b;scanf("%d%d", &a, &b);add(a, b);}int res = 0;for (int i = 1; i <= n1; i ++ ){memset(st, false, sizeof st);if (find(i)) res ++ ;}printf("%d\n", res);return 0;
}

算法板子:O(m*n),n表示点数,m表示边数

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过bool find(int x)
{for (int i = h[x]; i != -1; i = ne[i]){int j = e[i];if (!st[j]){st[j] = true;if (match[j] == 0 || find(match[j])){match[j] = x;return true;}}}return false;
}// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{memset(st, false, sizeof st);if (find(i)) res ++ ;
}

 

相关文章:

二分图

目录 二分图 染色法判定二分图 匈牙利算法 二分图 二分图&#xff0c;又叫二部图&#xff0c;将所有点分成两个集合&#xff0c;使得所有边只出现在集合之间的点之间&#xff0c;而集合内部的点之间没有边。二分图当且仅当图中没有奇数环。只要图中环的边数没奇数个数的&am…...

[VUE]3-路由

目录 路由 Vue-Router1、Vue-Router 介绍2、路由配置3、嵌套路由3.1、简介3.2、实现步骤3.3、⭐注意事项 4、⭐router-view标签详解 ​&#x1f343;作者介绍&#xff1a;双非本科大三网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;专注于Java领域学习&#xff0c;擅…...

Kafka(六)消费者

目录 Kafka消费者1 配置消费者bootstrap.serversgroup.idkey.deserializervalue.deserializergroup.instance.idfetch.min.bytes1fetch.max.wait.msfetch.max.bytes57671680 (55 mebibytes)max.poll.record500max.partition.fetch.bytessession.timeout.ms45000 (45 seconds)he…...

RK3399平台入门到精通系列讲解(实验篇)共享工作队列的使用

🚀返回总目录 文章目录 一、工作队列相关接口函数1.1、初始化函数1.2、调度/取消调度工作队列函数二、信号驱动 IO 实验源码2.1、Makefile2.2、驱动部分代码工作队列是实现中断下半部分的机制之一,是一种用于管理任务的数据结构或机制。它通常用于多线程,多进程或分布式系统…...

STM32 基于 MPU6050 的飞行器姿态控制设计与实现

基于STM32的MPU6050姿态控制设计是无人机、飞行器等飞行器件开发中的核心技术之一。在本文中&#xff0c;我们将介绍如何利用STM32和MPU6050实现飞行器的姿态控制&#xff0c;并提供相应的代码示例。 1. 硬件连接及库配置 首先&#xff0c;我们需要将MPU6050连接到STM32微控制…...

大数据平台Bug Bash大扫除最佳实践

一、背景 随着越来越多的"新人"在日常工作以及大促备战中担当大任&#xff0c;我们发现仅了解自身系统业务已不能满足日常系统开发运维需求。为此&#xff0c;大数据平台部门组织了一次Bug Bash活动&#xff0c;既能提升自己对兄弟产品的理解和使用&#xff0c;又能…...

JavaScript 中的数组过滤

在构建动态和交互式程序时&#xff0c;您可能需要添加一些交互式功能。例如&#xff0c;用户单击按钮以筛选一长串项目。 您可能还需要处理大量数据&#xff0c;以仅返回与指定条件匹配的项目。 在本文中&#xff0c;您将学习如何使用两种主要方法在 JavaScript 中过滤数组。…...

随机森林(Random Forest)

随机森林&#xff08;Random Forest&#xff09;是一种集成学习方法&#xff0c;通过组合多个决策树来提高模型的性能和鲁棒性。随机森林在每个决策树的训练过程中引入了随机性&#xff0c;包括对样本和特征的随机选择&#xff0c;以提高模型的泛化能力。以下是随机森林的基本原…...

本地引入Element UI后导致图标显示异常

引入方式 npm 安装 推荐使用 npm 的方式安装&#xff0c;它能更好地和 webpack 打包工具配合使用。 npm i element-ui -SCDN 目前可以通过 unpkg.com/element-ui 获取到最新版本的资源&#xff0c;在页面上引入 js 和 css 文件即可开始使用。 <!-- 引入样式 --> <…...

UE5.1_UMG序列帧动画制作

UE5.1_UMG序列帧动画制作 UMG序列帧动画制作相对比较简单&#xff0c;不像视频帧需要创建媒体播放器那么复杂&#xff0c;以下简要说明&#xff1a; 1. 事件函数 2. 准备序列帧装入数组 3. 构造调用事件函数 4. 预览 序列帧UMG0105 5. 完成&#xff01;按需配置即可。...

总结HarmonyOS的技术特点

HarmonyOS是华为自主研发的面向全场景的分布式操作系统。它的技术特点主要体现在以下几个方面&#xff1a; 分布式架构&#xff1a;HarmonyOS采用了分布式架构设计&#xff0c;通过组件化和小型化等方法&#xff0c;支持多种终端设备按需弹性部署&#xff0c;能够适配不同类别的…...

从0到1入门C++编程——04 类和对象之封装、构造函数、析构函数、this指针、友元

文章目录 一、封装二、项目文件拆分三、构造函数和析构函数1.构造函数的分类及调用2.拷贝函数调用时机3.构造函数调用规则4.深拷贝与浅拷贝5.初始化列表6.类对象作为类成员7.静态成员 四、C对象模型和this指针1.类的对象大小计算2.this指针3.空指针访问成员函数4.const修饰成员…...

Robot Operating System 2: Design, Architecture, and Uses In The Wild

Robot Operating System 2: Design, Architecture, and Uses In The Wild (机器人操作系统 2&#xff1a;设计、架构和实际应用) 摘要&#xff1a;随着机器人在广泛的商业用例中的部署&#xff0c;机器人革命的下一章正在顺利进行。即使在无数的应用程序和环境中&#xff0c;也…...

TinyEngine 服务端正式开源啦!!!

背景介绍 TinyEngine 低代码引擎介绍 随着企业对于低代码开发平台的需求日益增长&#xff0c;急需一个通用的解决方案来满足各种低代码平台的开发需求。正是在这种情况下&#xff0c;低代码引擎应运而生。它是一种通用的开发框架&#xff0c;通过对低代码平台系统常用的功能进…...

网页设计与制作web前端设计html+css+js成品。电脑网站制作代开发。vscodeDrea 【企业公司宣传网站(HTML静态网页项目实战)附源码】

网页设计与制作web前端设计htmlcssjs成品。电脑网站制作代开发。vscodeDrea 【企业公司宣传网站&#xff08;HTML静态网页项目实战&#xff09;附源码】 https://www.bilibili.com/video/BV1Hp4y1o7RY/?share_sourcecopy_web&vd_sourced43766e8ddfffd1f1a1165a3e72d7605...

Avalonia学习(二十)-登录界面演示

今天开始继续Avalonia练习。 本节&#xff1a;演示实现登录界面 在网上看见一个博客&#xff0c;展示Avalonia实现&#xff0c;仿照GGTalk&#xff0c;我实现了一下&#xff0c;感觉是可以的。将测试的数据代码效果写下来。主要是样式使用&#xff0c;图片加载方式。 只有前…...

Spring依赖注入的魔法:深入DI的实现原理【beans 五】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Spring依赖注入的魔法&#xff1a;深入DI的实现原理【beans 五】 前言DI的基本概念基本概念&#xff1a;为什么使用依赖注入&#xff1a; 构造器注入构造器注入的基本概念&#xff1a;示例&#xff1a…...

【学习笔记】1、数字逻辑概论

1.1 数字信号 数字信号&#xff0c;在时间和数值上均是离散的。数字信号的表达方式&#xff1a;二值数字逻辑和逻辑电平描述的数字波形。 &#xff08;1&#xff09; 数字波形的两种类型 数值信号又称为“二值信号”。数字波形又称为“二值位形图”。 什么是一拍 一定的时…...

设置代理IP地址对网络有什么影响?爬虫代理IP主要有哪些作用?

在互联网的广泛应用下&#xff0c;代理IP地址成为了一种常见的网络技术。代理IP地址可以改变用户的上网行为&#xff0c;进而影响网络访问的速度和安全性。本篇文章将探讨设置代理IP地址对网络的影响&#xff0c;以及爬虫代理IP的主要作用。 首先&#xff0c;让我们来了解一下代…...

聊聊jvm的mapped buffer的统计

序 本文主要研究一下jvm的mapped buffer的统计 示例 private void writeDirectBuffer() {// 分配一个256MB的直接缓冲区ByteBuffer buffer ByteBuffer.allocateDirect(256 * 1024 * 1024);// 填充数据Random random new Random();while (buffer.remaining() > 4) {buff…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

ArcGIS Pro+ArcGIS给你的地图加上北回归线!

今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等&#xff0c;设置经线、纬线都以10间隔显示。 2、需要插入背会归线&#xf…...