当前位置: 首页 > news >正文

[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(3) 质量刚体的在坐标系下运动

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.

食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达

机构运动学与动力学分析与建模 Ch00-2质量刚体的在坐标系下运动Part3

      • 2.2.3 欧拉方程 Euler equation - 2


2.2.3 欧拉方程 Euler equation - 2

  • 进而分析 H ⃗ Σ M F = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ ( R ⃗ G P i F ⋅ R ⃗ G P i F ) ω ⃗ M F d m i − ∫ ( R ⃗ G P i F ⋅ ω ⃗ M F ) R ⃗ G P i F d m i \vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\omega}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}} H ΣMF=mtotalR GF×V GF+(R GPiFR GPiF)ω MFdmi(R GPiFω MF)R GPiFdmi,有:
    H ⃗ Σ M F = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + ∫ ( R ⃗ G P i F T R ⃗ G P i F ⋅ E 3 × 3 − R ⃗ G P i F R ⃗ G P i F T ) d m i ⋅ ω ⃗ M F = m t o t a l ⋅ R ⃗ G F × V ⃗ G F + [ I ] Σ M / G F ⋅ ω ⃗ M F H ⃗ Σ M / G F = H ⃗ Σ M F − m t o t a l ⋅ R ⃗ G F × V ⃗ G F = [ I ] Σ M / G F ⋅ ω ⃗ M F \begin{split} &\vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} =m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \\ &\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\vec{H}_{\Sigma _{\mathrm{M}}}^{F}-m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \end{split} H ΣMF=mtotalR GF×V GF+(R GPiFTR GPiFE3×3R GPiFR GPiFT)dmiω MF=mtotalR GF×V GF+[I]ΣM/GFω MFH ΣM/GF=H ΣMFmtotalR GF×V GF=[I]ΣM/GFω MF
    则相对于质心点 G G G 存在:
    { τ ⃗ G F = d h ⃗ G F d t τ ⃗ G / O F = d h ⃗ G / O F d t + V ⃗ O F × P ⃗ G F P ⃗ G F = m t o t a l V ⃗ G F \begin{cases} \vec{\tau}_{\mathrm{G}}^{F}=\frac{\mathrm{d}\vec{h}_{\mathrm{G}}^{F}}{\mathrm{dt}}\\ \vec{\tau}_{\mathrm{G}/\mathrm{O}}^{F}=\frac{\mathrm{d}\vec{h}_{\mathrm{G}/\mathrm{O}}^{F}}{\mathrm{dt}}+\vec{V}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F}\\ \vec{P}_{\mathrm{G}}^{F}=m_{\mathrm{total}}\vec{V}_{\mathrm{G}}^{F}\\ \end{cases} τ GF=dtdh GFτ G/OF=dtdh G/OF+V OF×P GFP GF=mtotalV GF
  • H ⃗ Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} H ΣM/OF进一步推导,可得:
    H ⃗ Σ M / O F = ∑ i N R ⃗ O P i F × P ⃗ P i F = ∑ i N m P i ⋅ R ⃗ O P i F × ( ω ⃗ F × R ⃗ O P i F ) = ∑ i N m P i ⋅ R ⃗ ~ O P i F ⋅ ( ω ⃗ ~ F ⋅ R ⃗ O P i F ) = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ 0 − z O P i F y O P i F z O P i F 0 − x O P i F − y O P i F x O P i F 0 ] ⋅ [ I ^ J ^ K ^ ] T ( [ 0 − w z P i F w y P i F w z P i F 0 − w x P i F − w y P i F w x P i F 0 ] ⋅ [ x O P i F y O P i F z O P i F ] ) = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ [ ( y O P i F ) 2 + ( z O P i F ) 2 ] w x P i F − ( x O P i F y O P i F ) w y P i F − ( x O P i F z O P i F ) w z P i F − ( y O P i F x O P i F ) w x P i F + [ ( x O P i F ) 2 + ( z O P i F ) 2 ] w y P i F − ( y O P i F z O P i F ) w z P i F − ( z O P i F x O P i F ) w x P i F − ( z O P i F y O P i F ) w y P i F + [ ( x O P i F ) 2 + ( y O P i F ) 2 ] w z P i F ] = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ ( y O P i F ) 2 + ( z O P i F ) 2 − x O P i F y O P i F − x O P i F z O P i F − y O P i F x O P i F ( x O P i F ) 2 + ( z O P i F ) 2 − y O P i F z O P i F − z O P i F x O P i F − z O P i F y O P i F ( x O P i F ) 2 + ( y O P i F ) 2 ] [ w x P i F w y P i F w z P i F ] = [ I ^ J ^ K ^ ] T [ ∑ i N m P i ⋅ [ ( y O P i F ) 2 + ( z O P i F ) 2 ] − ∑ i N m P i ⋅ x O P i F y O P i F − ∑ i N m P i ⋅ ( x O P i F z O P i F ) − ∑ i N m P i ⋅ ( y O P i F x O P i F ) ∑ i N m P i ⋅ [ ( x O P i F ) 2 + ( z O P i F ) 2 ] − ∑ i N m P i ⋅ ( y O P i F z O P i F ) − ∑ i N m P i ⋅ ( z O P i F x O P i F ) − ∑ i N m P i ⋅ ( z O P i F y O P i F ) ∑ i N m P i ⋅ [ ( x O P i F ) 2 + ( y O P i F ) 2 ] ] [ w x P i F w y P i F w z P i F ] = [ I ^ J ^ K ^ ] T [ I x x I x y I x z I y x I y y I y z I z x I z y I z z ] [ w x P i F w y P i F w z P i F ] = [ I ^ J ^ K ^ ] T [ I x x w x P i F + I x y w y P i F + I x z w z P i F I y x w x P i F + I y y w y P i F + I y z w z P i F I z x w x P i F + I z y w y P i F + I z z w z P i F ] = [ I ^ J ^ K ^ ] T [ H x H y H z ] \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\sum_i^N{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{P}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F}\cdot \left( \tilde{\vec{\omega}}^F\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} 0& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}& y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}& 0& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}& x_{\mathrm{OP}_{\mathrm{i}}}^{F}& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left( \left[ \begin{matrix} 0& -w_{\mathrm{z}_{\mathrm{Pi}}}^{F}& w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}& 0& -w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ -w_{\mathrm{y}_{\mathrm{Pi}}}^{F}& w_{\mathrm{x}_{\mathrm{Pi}}}^{F}& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right)} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \,\, \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} I_{\mathrm{xx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{yx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{zx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} H_{\mathrm{x}}\\ H_{\mathrm{y}}\\ H_{\mathrm{z}}\\ \end{array} \right] \end{split} H ΣM/OF=iNR OPiF×P PiF=iNmPiR OPiF×(ω F×R OPiF)=iNmPiR ~OPiF(ω ~FR OPiF)=iNmPi I^J^K^ T 0zOPiFyOPiFzOPiF0xOPiFyOPiFxOPiF0 I^J^K^ T 0wzPiFwyPiFwzPiF0wxPiFwyPiFwxPiF0 xOPiFyOPiFzOPiF =iNmPi I^J^K^ T [(yOPiF)2+(zOPiF)2]wxPiF(xOPiFyOPiF)wyPiF(xOPiFzOPiF)wzPiF(yOPiFxOPiF)wxPiF+[(xOPiF)2+(zOPiF)2]wyPiF(yOPiFzOPiF)wzPiF(zOPiFxOPiF)wxPiF(zOPiFyOPiF)wyPiF+[(xOPiF)2+(yOPiF)2]wzPiF =iNmPi I^J^K^ T (yOPiF)2+(zOPiF)2yOPiFxOPiFzOPiFxOPiFxOPiFyOPiF(xOPiF)2+(zOPiF)2zOPiFyOPiFxOPiFzOPiFyOPiFzOPiF(xOPiF)2+(yOPiF)2 wxPiFwyPiFwzPiF = I^J^K^ T iNmPi[(yOPiF)2+(zOPiF)2]iNmPi(yOPiFxOPiF)iNmPi(zOPiFxOPiF)iNmPixOPiFyOPiFiNmPi[(xOPiF)2+(zOPiF)2]iNmPi(zOPiFyOPiF)iNmPi(xOPiFzOPiF)iNmPi(yOPiFzOPiF)iNmPi[(xOPiF)2+(yOPiF)2] wxPiFwyPiFwzPiF = I^J^K^ T IxxIyxIzxIxyIyyIzyIxzIyzIzz wxPiFwyPiFwzPiF = I^J^K^ T IxxwxPiF+IxywyPiF+IxzwzPiFIyxwxPiF+IyywyPiF+IyzwzPiFIzxwxPiF+IzywyPiF+IzzwzPiF = I^J^K^ T HxHyHz

其中:

  • 若有: ω ⃗ = [ I ^ J ^ K ^ ] T [ ω 1 ω 2 ω 3 ] , R ⃗ = [ I ^ J ^ K ^ ] T [ r 1 r 2 r 3 ] \vec{\omega}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \omega _1\\ \omega _2\\ \omega _3\\ \end{array} \right] ,\vec{R}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} r_1\\ r_2\\ r_3\\ \end{array} \right] ω = I^J^K^ T ω1ω2ω3 ,R = I^J^K^ T r1r2r3 ,则有如下叉乘的计算:
    ω ⃗ × R ⃗ = ω ⃗ ~ ⋅ R ⃗ = [ I ^ J ^ K ^ ] T ( [ 0 − ω 3 ω 2 ω 3 0 − ω 1 − ω 2 ω 1 0 ] ⋅ [ r 1 r 2 r 3 ] ) \vec{\omega}\times \vec{R}=\tilde{\vec{\omega}}\cdot \vec{R}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left( \left[ \begin{matrix} 0& -\omega _3& \omega _2\\ \omega _3& 0& -\omega _1\\ -\omega _2& \omega _1& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} r_1\\ r_2\\ r_3\\ \end{array} \right] \right) ω ×R =ω ~R = I^J^K^ T 0ω3ω2ω30ω1ω2ω10 r1r2r3
  • H ⃗ Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} H ΣM/OF表示刚体 Σ M \Sigma _{\mathrm{M}} ΣM相对于(with respect to/W.R.T) O O O 的角动量在固定坐标系 { F } \left\{ F \right\} {F}的表达。其投影分量满足:
    [ H x H y H z ] = [ I x x w x P i F + I x y w y P i F + I x z w z P i F I y x w x P i F + I y y w y P i F + I y z w z P i F I z x w x P i F + I z y w y P i F + I z z w z P i F ] = [ I x x I x y I x z I y x I y y I y z I z x I z y I z z ] [ w x P i F w y P i F w z P i F ] = [ I ] [ w x P i F w y P i F w z P i F ] \left[ \begin{array}{c} H_{\mathrm{x}}\\ H_{\mathrm{y}}\\ H_{\mathrm{z}}\\ \end{array} \right] =\left[ \begin{array}{c} I_{\mathrm{xx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{yx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{zx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ I \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] HxHyHz = IxxwxPiF+IxywyPiF+IxzwzPiFIyxwxPiF+IyywyPiF+IyzwzPiFIzxwxPiF+IzywyPiF+IzzwzPiF = IxxIyxIzxIxyIyyIzyIxzIyzIzz wxPiFwyPiFwzPiF =[I] wxPiFwyPiFwzPiF
  • 矩阵 [ I ] \left[ I \right] [I]常被称为{惯性矩阵Inertia-matrix,有: H ⃗ Σ M / O F = [ I ] ω ⃗ F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}=\left[ I \right] \vec{\omega}^F H ΣM/OF=[I]ω F,其中:
    [ I ] = [ I x x I x y I x z I y x I y y I y z I z x I z y I z z ] = [ ∑ i N m P i ⋅ [ ( y O P i F ) 2 + ( z O P i F ) 2 ] − ∑ i N m P i ⋅ x O P i F y O P i F − ∑ i N m P i ⋅ ( x O P i F z O P i F ) − ∑ i N m P i ⋅ ( y O P i F x O P i F ) ∑ i N m P i ⋅ [ ( x O P i F ) 2 + ( z O P i F ) 2 ] − ∑ i N m P i ⋅ ( y O P i F z O P i F ) − ∑ i N m P i ⋅ ( z O P i F x O P i F ) − ∑ i N m P i ⋅ ( z O P i F y O P i F ) ∑ i N m P i ⋅ [ ( x O P i F ) 2 + ( y O P i F ) 2 ] ] \begin{split} \left[ I \right] &=\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \\ &=\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}\\ \end{matrix} \right] \end{split} [I]= IxxIyxIzxIxyIyyIzyIxzIyzIzz = iNmPi[(yOPiF)2+(zOPiF)2]iNmPi(yOPiFxOPiF)iNmPi(zOPiFxOPiF)iNmPixOPiFyOPiFiNmPi[(xOPiF)2+(zOPiF)2]iNmPi(zOPiFyOPiF)iNmPi(xOPiFzOPiF)iNmPi(yOPiFzOPiF)iNmPi[(xOPiF)2+(yOPiF)2]

上式的实际推导过程,是进行两次转置变化,在实际过程中可以理解成,适用于矩阵与矢量相乘的张量Tensor乘法,因此也可将惯性矩阵 [ I ] \left[ I \right] [I]称为惯性张量Inertia Tensor。而采用基于拉格朗日恒等式证明的三个向量的双重矢积公式,可能更利于理解:

  • 三个向量的双重矢积公式: ( r ⃗ 1 × r ⃗ 2 ) × r ⃗ 3 = ( r ⃗ 1 ⋅ r ⃗ 3 ) r ⃗ 2 − ( r ⃗ 2 ⋅ r ⃗ 3 ) r ⃗ 1 \left( \vec{r}_1\times \vec{r}_2 \right) \times \vec{r}_3=\left( \vec{r}_1\cdot \vec{r}_3 \right) \vec{r}_2-\left( \vec{r}_2\cdot \vec{r}_3 \right) \vec{r}_1 (r 1×r 2)×r 3=(r 1r 3)r 2(r 2r 3)r 1
    H ⃗ Σ M / O F = ∑ i N R ⃗ O P i F × P ⃗ P i F = ∑ i N m P i ⋅ R ⃗ O P i F × ( ω ⃗ F × R ⃗ O P i F ) = ∑ i N m P i ⋅ [ ( R ⃗ O P i F ⋅ R ⃗ O P i F ) ω ⃗ F − ( ω ⃗ F ⋅ R ⃗ O P i F ) R ⃗ O P i F ] = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ ( [ x O P i F y O P i F z O P i F ] T [ x O P i F y O P i F z O P i F ] ) [ w x P i F w y P i F w z P i F ] − ( [ w x P i F w y P i F w z P i F ] T [ x O P i F y O P i F z O P i F ] ) [ x O P i F y O P i F z O P i F ] ] = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ [ ( ( x O P i F ) 2 + ( y O P i F ) 2 + ( z O P i F ) 2 ) w x P i F ( ( x O P i F ) 2 + ( y O P i F ) 2 + ( z O P i F ) 2 ) w y P i F ( ( x O P i F ) 2 + ( y O P i F ) 2 + ( z O P i F ) 2 ) w z P i F ] − [ ( w x P i F x O P i F + w y P i F y O P i F + w z P i F z O P i F ) x O P i F ( w x P i F x O P i F + w y P i F y O P i F + w z P i F z O P i F ) y O P i F ( w x P i F x O P i F + w y P i F y O P i F + w z P i F z O P i F ) z O P i F ] ] = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ [ ( y O P i F ) 2 + ( z O P i F ) 2 ] w x P i F − ( x O P i F y O P i F ) w y P i F − ( x O P i F z O P i F ) w z P i F − ( y O P i F x O P i F ) w x P i F + [ ( x O P i F ) 2 + ( z O P i F ) 2 ] w y P i F − ( y O P i F z O P i F ) w z P i F − ( z O P i F x O P i F ) w x P i F − ( z O P i F y O P i F ) w y P i F + [ ( x O P i F ) 2 + ( y O P i F ) 2 ] w z P i F ] = ∑ i N m P i ⋅ [ I ^ J ^ K ^ ] T [ ( y O P i F ) 2 + ( z O P i F ) 2 − x O P i F y O P i F − x O P i F z O P i F − y O P i F x O P i F ( x O P i F ) 2 + ( z O P i F ) 2 − y O P i F z O P i F − z O P i F x O P i F − z O P i F y O P i F ( x O P i F ) 2 + ( y O P i F ) 2 ] [ w x P i F w y P i F w z P i F ] \begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\sum_i^N{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{P}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) \vec{\omega}^F-\left( \vec{\omega}^F\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \left( \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right) \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] -\left( \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right) \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \left[ \begin{array}{c} \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] -\left[ \begin{array}{c} \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}}\left[ \begin{matrix} \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \end{split} H ΣM/OF=iNR OPiF×P PiF=iNmPiR OPiF×(ω F×R OPiF)=iNmPi[(R OPiFR OPiF)ω F(ω FR OPiF)R OPiF]=iNmPi I^J^K^ T xOPiFyOPiFzOPiF T xOPiFyOPiFzOPiF wxPiFwyPiFwzPiF wxPiFwyPiFwzPiF T xOPiFyOPiFzOPiF xOPiFyOPiFzOPiF =iNmPi I^J^K^ T ((xOPiF)2+(yOPiF)2+(zOPiF)2)wxPiF((xOPiF)2+(yOPiF)2+(zOPiF)2)wyPiF((xOPiF)2+(yOPiF)2+(zOPiF)2)wzPiF (wxPiFxOPiF+wyPiFyOPiF+wzPiFzOPiF)xOPiF(wxPiFxOPiF+wyPiFyOPiF+wzPiFzOPiF)yOPiF(wxPiFxOPiF+wyPiFyOPiF+wzPiFzOPiF)zOPiF =iNmPi I^J^K^ T [(yOPiF)2+(zOPiF)2]wxPiF(xOPiFyOPiF)wyPiF(xOPiFzOPiF)wzPiF(yOPiFxOPiF)wxPiF+[(xOPiF)2+(zOPiF)2]wyPiF(yOPiFzOPiF)wzPiF(zOPiFxOPiF)wxPiF(zOPiFyOPiF)wyPiF+[(xOPiF)2+(yOPiF)2]wzPiF =iNmPi I^J^K^ T (yOPiF)2+(zOPiF)2yOPiFxOPiFzOPiFxOPiFxOPiFyOPiF(xOPiF)2+(zOPiF)2zOPiFyOPiFxOPiFzOPiFyOPiFzOPiF(xOPiF)2+(yOPiF)2 wxPiFwyPiFwzPiF

相关文章:

[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(3) 质量刚体的在坐标系下运动

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。 2024年底本人学位论文发表后方可摘抄 若有…...

云计算历年题整理

目录 第一大题 第一大题HA计算 给出计算连接到EC2节点的EBS的高可用性(HA)的数学公式,如场景中所述;计算EC2节点上的EBS的高可用性(HA);场景中80%的AWS EC2节点用于并行处理,总共有100个虚拟中央处理单元(vCPUs)用于处理数据&a…...

2401vim,vim重要修改更新大全

原文 2023 更好的UTF-16支持 添加strutf16len()和utf16idx(),并在byteidx(),byteidxcomp()和charidx()中添加utf16标志,在内置.txt文档中. 添加crypymethod xchacha20v2 与xchacha20基本相同,但更能抵御libsodium的变化. 2022 添加"smoothscroll" 用鼠标滚动…...

安卓多用户管理之Userinfo

目录 前言Userinfo----用户信息1.1 属性1.2 构造器1.3 信息的判断及获取方法1.3.1 获取默认用户类型1.3.2 基础信息判断 1.4 序列化部分 总结 前言 UserManagerService内部类UserData中有一个Userinfo类型的info参数,在UserData中并未有所体现,但在后续…...

JavaScript-流程控制-笔记

1.流程语句的分类 顺序结构 分支结构 循环结构 2.if语句 1)if结构 if( 条件 ){ // 条件成立执行的代码 } 2)if else 结构 if( 条件 ){ // 条件成立执行的代码 }else{ // 条件不成…...

springboot + vue3实现增删改查分页操作

springboot vue3实现增删改查分页操作 环境最终实现效果实现功能主要框架代码实现数据库后端前端 注意事项 环境 jdk17 vue3 最终实现效果 实现功能 添加用户,禁用,启用,删除,编辑,分页查询 主要框架 后端 spri…...

leetcode01-重复的子字符串

题目链接:459. 重复的子字符串 - 力扣(LeetCode) 一般思路: 如果存在k是S的字串,记k的长度为s,S的长度为n,则一定有n是s的倍数,且满足对于j∈[s,n],一定存在s[j]s[j-s]; …...

目标检测数据集 - 夜间行人检测数据集下载「包含VOC、COCO、YOLO三种格式」

数据集介绍:夜间、低光行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如夜间街景行人、夜间道路行人、夜间遮挡行人、夜间严重遮挡行人数据;适用实际项目应用:公共场所监控场景下夜间行人检测项目…...

【YOLO系列】 YOLOv4思想详解

前言 以下内容仅为个人在学习人工智能中所记录的笔记,先将目标识别算法yolo系列的整理出来分享给大家,供大家学习参考。 本文未对论文逐句逐段翻译,而是阅读全文后,总结出的YOLO V4论文的思路与实现路径。 若文中内容有误&#xf…...

查询json数组

步骤一:创建表格 首先,我们需要创建一个表格来存储包含JSON对象数组的数据。可以使用以下代码创建一个名为 my_table 的表格: CREATE TABLE my_table (id INT PRIMARY KEY AUTO_INCREMENT,json_data JSON ); 上述代码创建了一个包含两个列的…...

Docker mysql 主从复制

目录 介绍:为什么需要进行mysql的主从复制 主从复制原理: ✨主从环境搭建 主从一般面试问题: 介绍:为什么需要进行mysql的主从复制 在实际的生产中,为了解决Mysql的单点故障已经提高MySQL的整体服务性能&#xff…...

第7章-第1节-Java中的异常处理

1、异常Exception概述: 1)、异常的概念: 现实生活中万物在发展和变化会出现各种各样不正常的现象。 例如:人的成长过程中会生病。 实际工作中,遇到的情况不可能是非常完美的。 比如:你写的某个模块&…...

使用python生成一个月度账单消费金额柱状图表

阿里云月度账单根据月份、消费金额(可开票)生成一个柱状图表 import pandas as pd import matplotlib.pyplot as plt import os# 设置中文字体 plt.rcParams[font.sans-serif] [SimHei] # 用于显示中文的宋体# 获取当前工作目录下所有CSV文件 csv_fil…...

将一个独立的磁盘添加到已有的 `/` 分区

将一个独立的磁盘添加到已有的 / 分区是比较复杂的,因为 / 分区已经是一个逻辑卷(LVM)。在这种情况下,可以扩展现有的 LVM 体积组(Volume Group),然后扩展 / 逻辑卷(Logical Volume&…...

AI智能电销器人需要注意哪些问题呢

随着科技的不断发展,人们出行变得越来越方便,市面上很多产品也越来越智能化,高科技的产品不仅改变了我们的生活方式而且也改变了企业的竞争方式,很多的企业尤其是电销行业中的大佬己经意识到了AI电销机器人的好处,因此…...

呼叫中心研究分析:到2027年市场规模预计将达4966亿美元

由于业务运营中以客户为中心的方法的兴起,呼叫中心市场近年来出现了显着增长。随着对客户满意度的日益重视,全球对呼叫中心服务的需求猛增。在本次分析中,我们将从全球和中国的角度审视呼叫中心市场的发展趋势。全球市场: 到 2027…...

工业数据采集分析——工厂大脑 提升综合经济效益

随着企业对数字化的认知越来越清晰,对工业数智化的战略越来越明确,企业的诉求也在发生转变。中国的工业企业经过近几十年的发展,自动化、信息化,以及一些基础的数据系统建设在不同的行业中慢慢地推进。近几年,工业企业…...

python系列教程218——生成器表达式

朋友们,如需转载请标明出处:https://blog.csdn.net/jiangjunshow 声明:在人工智能技术教学期间,不少学生向我提一些python相关的问题,所以为了让同学们掌握更多扩展知识更好地理解AI技术,我让助理负责分享…...

jquery 实现简单的标签页效果

实现 <!DOCTYPE html> <html> <head><title>jq 实现简单的标签页效果</title><script src"/jquery/jquery-1.11.1.min.js"></script><style>.tab {cursor: pointer;width:100px;height:30px;float:left;text-align…...

C++ Web框架Drogon初体验笔记

这段时间研究了一下C的Web框架Drogon。从设计原理上面来说和Python的Web框架是大同小异的&#xff0c;但是难点在于编译项目上面&#xff0c;所以现在记录一下编译的过程。下面图是我项目的目录。其中include放的是头文件&#xff0c;src放的是视图文件&#xff0c;static放的是…...

x-cmd pkg | busybox - 嵌入式 Linux 的瑞士军刀

目录 简介首次用户功能特点竞品和相关作品 进一步阅读 简介 busybox 是一个开源的轻量级工具集合&#xff0c;集成了一批最常用 Unix 工具命令&#xff0c;只需要几 MB 大小就能覆盖绝大多数用户在 Linux 的使用&#xff0c;能在多款 POSIX 环境的操作系统&#xff08;如 Linu…...

Java异常简单介绍

文章目录 1. 异常分类和关键字1.1 分类1.2 关键字 2. Error2.1 Error定义2.2 常见的Error2.2.1 VirtualMachineError2.2.2 ThreadDeath2.2.3 LinkageError2.2.4 AssertionError2.2.5 InternalError2.2.6 OutOfMemoryError2.2.6.1 OOM原因2.2.6.2 OutOfMemoryError会导致宕机吗 …...

ocrmypdf_pdf识别

安装 安装说明 https://ocrmypdf.readthedocs.io/en/latest/installation.html#native-windows提到需要的软件&#xff1a; Python 3.7 (64-bit) or later Tesseract 4.0 or later Ghostscript 9.50 or later 安装 ocrmypdf pip install ocrmypdf 添加语言包 https://oc…...

卷积神经网络|猫狗分类系列--导入kaggle猫狗数据集

解决任何真实问题的重要一步是获取数据&#xff0c;Kaggle提供了大量不同数据科学问题的竞赛。 我们将从 https://www.kaggle.com/competitions/dogs-vs-cats/data 下载猫狗数据集&#xff0c;并对其进行一定的操作&#xff0c;以正确的导入到我们的计算机&#xff0c;为接下…...

【linux 多线程并发】线程本地数据存储的两种方式,每个线程可以有同名全局私有数据,以及两种方式的性能分析

线程本地数据(TLS) ​专栏内容&#xff1a; 参天引擎内核架构 本专栏一起来聊聊参天引擎内核架构&#xff0c;以及如何实现多机的数据库节点的多读多写&#xff0c;与传统主备&#xff0c;MPP的区别&#xff0c;技术难点的分析&#xff0c;数据元数据同步&#xff0c;多主节点的…...

2401d,d导入C的问题

原文 D中是否可用仅C头文件库? 在C语言中,我需要这样做: #define STB_DS_IMPLEMENTATION #include "stb_ds.h"在包含h文件前,必须在单个C文件中定义. 在D中试过: enum STB_DS_IMPLEMENTATION 1; import stb_ds;但它不管用.有建议吗?也许使用中间C文件会工作 ,但…...

SpringCloud GateWay实现路由限流

目录 RequestRateLimiterGatewayFilterFactory令牌桶算法实现限流 RequestRateLimiterGatewayFilterFactory Spring Cloud Gateway 内置了一个限流功能的过滤器工厂&#xff0c;那就是RequestRateLimiterGatewayFilterFactory &#xff0c;它使用 Redis 和 Lua 脚本实现令牌桶…...

打印日期c++

给出年份 y和一年中的第 d天&#xff0c;算出第 d天是几月几号。 输入格式 输入包含多组测试数据。 每组数据占一行&#xff0c;包含两个整数 y 和 d。 输出格式 每组数据输出一行一个结果&#xff0c;格式为 yyyy-mm-dd。 数据范围 输入最多包含 100 组数据, 1≤y≤3000, 1≤d…...

数据结构入门到入土——链表(1)

目录 一&#xff0c;顺序表表/ArrayList的缺陷 二&#xff0c;链表 三&#xff0c;链表的实现 四&#xff0c;与链表有关的题目练习&#xff08;1&#xff09; 1.删除链表中等于给定值 val 的所有节点 2.反转一个单链表 3.给定一个带有头结点 head 的非空单链表&#xf…...

MySQL C API的使用

MySQL C API的使用 介绍及使用 MySQL C API&#xff08;也称为 MySQL Connector/C&#xff09;是用于与 MySQL 数据库交互的 C 语言 API。它提供了一组函数和结构体&#xff0c;允许你在 C 程序中连接到 MySQL 数据库服务器&#xff0c;并执行查询、插入、更新等数据库操作。…...

温州龙湾区高端网站设计/杭州互联网公司排名榜

QQ137712826 医院病床呼叫系统 基本要求&#xff1a;平时显示时间&#xff1b;每个终端有两个按键&#xff0c;呼叫和取消&#xff1b;呼叫后显示房号和病床号&#xff0c; 灯光一直闪烁&#xff1b;主机可以强制取消呼叫&#xff1b;用通信方式实现&#xff1b;至少带 2 个终端…...

北京微网站建设设计服务/推广网站模板

Java中有八大基本数据类型byte类型:byte类型&#xff0c;使用一个字节存放一个数据&#xff0c;一个字节占八位&#xff0c;所以它取值范围是:1000 0000 ~ 0111 1111(-128-127)为什么不是0000 0000 ~ 1111 1111呢&#xff1f;我们都知道1111 1111 是负数的最大值&#xff0c;因…...

创可贴网站怎么做图片大全/如何写营销软文

DB2数据库在运行时会占用不少的系统内存。DB2按三个级别来管理内存&#xff08;由OSS组件向其他组件提供&#xff09;&#xff1a;内存集、内存池和内存块。内存块组成内存池。内存池属于一个内存集。内存集里有多个内存池。缓冲池&#xff08;BUFFERPOOL&#xff09;就其中的一…...

凡客的网站功能/刷排名有百度手机刷排名

原标题&#xff1a;最流行的笔记本 Linux 发行版来源&#xff1a;Solidotwww.solidot.org/story?sid53028Phoronixhas 发布了 2017 年度的 Linux 笔记本电脑调查结果&#xff0c;显示最流行的笔记本发行版是 Ubuntu 和 Arch。在 30,171 名回应者中&#xff0c;有 38.9% 使用 U…...

四川省营山县西城建筑公司网站/百度推广课程

hbase提供了导出表的方案&#xff0c;将指定的表导出到HDFS或本地&#xff0c;这样方便了备份或数据转移。 最快的方式是通过mapreduce来完成这件事&#xff0c;需要在hbase的conf中添加mapred-site.xml&#xff1a; Java代码 <property> <name>mapred.job.…...

门户网站建设先进性/app安装下载

点击上方蓝色字体&#xff0c;选择“标星公众号”优质文章&#xff0c;第一时间送达关注公众号后台回复pay或mall获取实战项目资料视频作者&#xff1a;rickiyang原文&#xff1a;www.cnblogs.com/rickiyang/p/11074232.html谈到序列化我们自然想到 Java 提供的 Serializable 接…...