数据分析——火车信息
任务目标
任务
1、整理火车发车信息数据,结果的表格形式为:
2、并输出最终的发车信息表
难点
1、多文件
一个文件夹,多个月的发车信息,一个excel,放一天的发车情况
2、数据表的格式特殊
如何分析表是一个难点
数据形式
图像呈现
文字描述
1、一张表含多辆车次信息
2、一辆车次信息分为标题(日期、车次、定员、客座率)和表格信息部分
3、表格信息部分分为x,y轴看
横着是发车站点、发车时间、下车人数
竖着是目标站点、到达时间、上车人数
4、图标呈现下三角趋势,因为过站无上车人数
注意:
因为横着是上车站点,终点站没有人上车,所以横着的车次不包含终点站,是所有车次-1
竖着的车次包含终点站——即所有车次信息
分析步骤
1、导入数据
存在问题
与原数据不同,原数据中的表头在该表的第一列中,每个属性对应的行为空值
处理方法
处理结果
结果分析
1、38列
因为原excel表中,有车次信息到第38列,导入数据会保持表格格式完整性,所以取最大列数
不到38的列数均为空值,需要处理
2、表格信息被存放在第一行中,还需处理
3、目标需求信息只到29列的下车人数,所以需要把有效信息抠出来
语法扩展(别人的资料)
python中pandas包使用的一个header参数_header=none-CSDN博客
2、数据处理
2.1获取有效信息(扣表)
2.1.1思路分析
1、判断车次
整张表包含很多车次
要知道哪一辆车是第几行到第几行,需要拆分
(即怎么判断,eg:0-33为车1,34-45为车2,······)
2、处理表头
导入的表中有很多表头,需要处理 ,把所有车次的表头抽取出来,找共同点
都有客座率
2.1.2解决方案
1、找表头
1.1data[0]
因为数据表行列均有属性,表头均在第0列,所以先判断data[0]是第0行还是第0列
1.2找到含有“客座率”的行数
语法扩展
apply()、lambda
loc()
Pandas读取某列、某行数据——loc、iloc用法总结_pandas读取某一行的数据-CSDN博客
1.3生成由表头信息组成的表
1.4批量分割+展开表
按照空格分割后得到一个表格
split()
Python知识精解:str split()方法 - 知乎 (zhihu.com)
expand参数
pandas的分列操作str.split()_pandas数据分列-CSDN博客
2、生成除表头外的信息表
data=data[~ind]
3、生成一趟车的数据
1、根据上车站点和上车人数所在的行(用遍历匹配)
确定每一趟列车所包含的行数,再扣其中的数据
2、找第一趟车的信息
3、重置行索引
因为之前删数据把行索引删了,出现了数据缺失,需要重置行索引
drop——删除多余的一列index
4、删除空值
重置索引后的表格为
表中30列后的值均为空值,需要删除
用空值数量进行判断,若某一列中空值数量=行数,则证明该列全为空,需要删除
5、生成完整一趟车的信息表
语法扩展
loc、iloc区别
pandas索引函数loc和iloc的区别_pandas loc与iloc区别-CSDN博客
loc基于标签索引、iloc基于位置索引
reset_index()
如何在pandas中使用set_index( )与reset_index( )设置索引 - 知乎 (zhihu.com)
3、数据分析
处理后的表
3.1取表头信息表中所需数据
3.2把表头信息与每辆车挂钩
原数据(2个表)
表头表
车次表
通过索引和步长取出需要的信息行
这样就匹配成功了
3.3、取所有站点
3.4循环所有站点取数据(用定位)
都用条件筛选
3.5整体操作(合并前面操作)
语法扩展
python dataframe是什么_Pandas 库之 DataFrame-CSDN博客
4、封装函数
5、数据导出
语法扩展
glob——查找文件
Python标准库glob模块详解_python glob-CSDN博客
tpdm——进度条
【python第三方库】tqdm简介_python tqdm库-CSDN博客
enumerate() 函数
Python enumerate() 函数 | 菜鸟教程
to_csv()
pandas的to_csv()使用方法_pandas to_csv-CSDN博客
总体代码
import warnings
warnings.filterwarnings('ignore')
import pandas as pdpath = './201501-201603/201501/20150101.xls'
data = pd.read_excel(path, skiprows=2, header=None)
data.head(50)# 日期
dates = path.split('/')[-1][:8]ind = data[0].apply(lambda x: '客座率' in x) # 筛选有车次信息的行数据
car_info = data.loc[ind, 0]
car_info = car_info.str.split(' ', expand=True) # 这里的得到车次、定员、客座率car_info# 删除车次信息行
data = data[~ind]
data.reset_index(inplace=True, drop=True)
data.head()## 接下来:找到某一趟车所在的小表格,思路就是找到【上车站、上车人数合计】所在的行
ind = data[0].apply(lambda x: '上车站'==x or '上车人数合计'==x)
car_index = data[ind]all_car = pd.DataFrame()
for start, end, checi, dingyuan, kezuolv in zip(car_index.index[0::2],car_index.index[1::2], car_info[0], car_info[6], car_info[8]):one_car = data.iloc[start:end+1, :] # 截取其中一趟车的数据one_car.reset_index(inplace=True, drop=True) # 重置索引col_ind = one_car.isna().sum(axis=0)==len(one_car) # 判断全为空的列one_car = one_car.loc[:, ~col_ind] # 删除空列station = one_car.iloc[2:-1, 0] # 取所有站点,在2至倒数第一行one_car_list = []for s in station: # 循环每个站点去取数据one_car_dict = {}one_car_dict['车次'] = checione_car_dict['定员'] = dingyuanone_car_dict['客座率'] = kezuolvone_car_dict['日期'] = datesone_car_dict['站点'] = sone_car_dict['进站时间'] = one_car.loc[one_car[0]==s, 1].values[0] # 进站时间one_car_dict['下车人数'] = one_car.loc[one_car[0]==s, one_car.shape[1]-1].values[0] # 下车人数try:one_car_dict['离站时间'] = one_car.loc[1,one_car.iloc[0]==s].values[0] # 离站时间one_car_dict['上车人数'] = one_car.loc[len(one_car)-1,one_car.iloc[0]==s].values[0] # 上车人数except:one_car_dict['离站时间'] = '--' # 终点站没有出站时间和人数one_car_dict['上车人数'] = '--'one_car_list.append(one_car_dict)one_car_data = pd.DataFrame(one_car_list)break#all_car = pd.concat([all_car, one_car_data])
#这一步结束就能看到处理后表的信息了one_car_datadef get_one_file(path):data = pd.read_excel(path, skiprows=2, header=None) # 读数据dates = path.split('/')[-1][:8] # 日期ind = data[0].apply(lambda x: '客座率' in x) # 筛选有车次信息的行数据car_info = data.loc[ind, 0]car_info = car_info.str.split(' ', expand=True) # 这里的得到车次、定员、客座率data = data[~ind] # 删除车次信息行data.reset_index(inplace=True, drop=True)## 接下来:找到某一趟车所在的小表格,思路就是找到【上车站、上车人数合计】所在的行ind = data[0].apply(lambda x: '上车站'==x or '上车人数合计'==x)car_index = data[ind]all_car = pd.DataFrame()for start, end, checi, dingyuan, kezuolv in zip(car_index.index[0::2],car_index.index[1::2], car_info[0], car_info[6], car_info[8]):one_car = data.iloc[start:end+1, :] # 截取其中一趟车的数据one_car.reset_index(inplace=True, drop=True) # 重置索引col_ind = one_car.isna().sum(axis=0)==len(one_car) # 判断全为空的列one_car = one_car.loc[:, ~col_ind] # 删除空列station = one_car.iloc[2:-1, 0] # 取所有站点,在2至倒数第一行one_car_list = []for s in station: # 循环每个站点去取数据one_car_dict = {}one_car_dict['车次'] = checione_car_dict['定员'] = dingyuanone_car_dict['客座率'] = kezuolvone_car_dict['日期'] = datesone_car_dict['站点'] = sone_car_dict['进站时间'] = one_car.loc[one_car[0]==s, 1].values[0] # 进站时间one_car_dict['下车人数'] = one_car.loc[one_car[0]==s, one_car.shape[1]-1].values[0] # 下车人数try:one_car_dict['离站时间'] = one_car.loc[1,one_car.iloc[0]==s].values[0] # 离站时间one_car_dict['上车人数'] = one_car.loc[len(one_car)-1,one_car.iloc[0]==s].values[0] # 上车人数except:one_car_dict['离站时间'] = '--' # 终点站没有出站时间和人数one_car_dict['上车人数'] = '--'one_car_list.append(one_car_dict)one_car_data = pd.DataFrame(one_car_list)all_car = pd.concat([all_car, one_car_data])return all_carfrom glob import glob
from tqdm import tqdm
all_path = glob('./201501-201603/*/*')
for i,path in tqdm(enumerate(all_path)):data = get_one_file(path)if i==0:data.to_csv('./result.csv', header=True, index=None, encoding='utf8', mode='a')else:data.to_csv('./result.csv', header=None, index=None, encoding='utf8', mode='a')
相关文章:
数据分析——火车信息
任务目标 任务 1、整理火车发车信息数据,结果的表格形式为: 2、并输出最终的发车信息表 难点 1、多文件 一个文件夹,多个月的发车信息,一个excel,放一天的发车情况 2、数据表的格式特殊 如何分析表是一个难点 数…...
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更…...
Asp .Net Web应用程序(.Net Framework4.8)网站发布到IIS
开启IIS 如果已开启跳过这步 打开控制面板-程序 打开IIS 发布Web程序(.Net Framework 4.8 web网页) 进入IIS管理器新建一个应用池 新建一个网站 网站创建完毕 为文件夹添加访问权限 如果不添加访问权限,运行时将会得到如下错误 设置权限 勾…...
vue element plus Typography 排版
我们对字体进行统一规范,力求在各个操作系统下都有最佳展示效果。 字体# 字号# LevelFont SizeDemoSupplementary text12px Extra SmallBuild with ElementBody (small)13px SmallBuild with ElementBody14px BaseBuild with ElementSmall Title16px MediumBuild w…...
理论U3 决策树
文章目录 一、决策树算法1、基本思想2、构成1)节点3)有向边/分支 3、分类步骤1)第1步-决策树生成/学习、训练2)第2步-分类/测试 4、算法关键 二、信息论基础1、概念2、信息量3、信息熵: 二、ID3 (Iterative Dichotomis…...
Redis 常用操作
一、Redis常用的5种数据类型 字符串(String):最基本的数据类型,可以存储字符串、整数或浮点数。哈希(Hash):键值对的集合,可以在一个哈希数据结构中存储多个字段和值。列表…...
c# 使用Null合并操作符例子
在这个示例中,我们定义了两个字符串变量 name 和 defaultName。变量 name 被赋值为 null,而变量 defaultName 被赋值为 “John Doe”。 接下来,我们使用 Null 合并操作符 ?? 来获取一个非空值。如果 name 不为 null,则 result 的…...
【Docker】docker部署conda并激活环境
原文作者:我辈李想 版权声明:文章原创,转载时请务必加上原文超链接、作者信息和本声明。 文章目录 前言一、新建dockerfile文件二、使用build创建镜像1.报错:Your shell has not been properly configured to use conda activate.…...
HarmonyOS@Link装饰器:父子双向同步
Link装饰器:父子双向同步 子组件中被Link装饰的变量与其父组件中对应的数据源建立双向数据绑定。 说明 从API version 9开始,该装饰器支持在ArkTS卡片中使用。 概述 Link装饰的变量与其父组件中的数据源共享相同的值。 装饰器使用规则说明 Link变…...
【idea】idea插件编写教程,博主原创idea插件 欢迎下载
前言:经常使用Objects.equals(a,b)方法的同学 应该或多或少都会因为粗心而传错参, 例如日常开发中 我们使用Objects.equals去比较 status(入参),statusEnum(枚举), 很容易忘记statusEnum.getCode() 或 statusEnum.getVaule() ,再比…...
深入理解 Hadoop (四)HDFS源码剖析
HDFS 集群启动脚本 start-dfs.sh 分析 启动 HDFS 集群总共会涉及到的角色会有 namenode, datanode, zkfc, journalnode, secondaryName 共五种角色。 JournalNode 核心工作和启动流程源码剖析 // 启动 JournalNode 的核心业务方法 public void start() throws IOException …...
【Vue3+React18+TS4】1-1 : 课程介绍与学习指南
本书目录:点击进入 一、为什么做这样一门课程? 二、本门课的亮点有哪些? 2.1、轻松驾驭 2.2、体系系统 2.3、高效快捷 2.4、融合贯通 三、课程内容包括哪些? 四、项目实战 《在线考勤系统》 五、课适合哪些同学? 一、为什么做这样一门课程? 近十年内前端…...
Nacos与Eureka的区别详解
Nacos与Eureka的区别详解 在微服务架构中,服务注册与发现是核心组件之一,它们允许服务实例在启动时自动注册,并且能被其他服务发现,从而实现服务之间的互相通信。Nacos和Eureka都是现代微服务体系中广泛使用的服务注册与发现工具。本文将深入分析二者的区别,并为您提供一…...
【算法刷题】Day28
文章目录 1. 买卖股票的最佳时机 III题干:算法原理:1. 状态表示:2. 状态转移方程3. 初始化4. 填表顺序5. 返回值 代码: 2. Z 字形变换题干:算法原理:1. 模拟2. 找规律 代码: 1. 买卖股票的最佳时…...
深入了解pnpm:一种高效的包管理工具
✨专栏介绍 在当今数字化时代,Web应用程序已经成为了人们生活和工作中不可或缺的一部分。而要构建出令人印象深刻且功能强大的Web应用程序,就需要掌握一系列前端技术。前端技术涵盖了HTML、CSS和JavaScript等核心技术,以及各种框架、库和工具…...
QEMU源码全解析 —— PCI设备模拟(1)
接前一篇文章: 1. PCI设备简介 PCI是用来连接外设的一种局部(local)总线,其主要功能是连接外部设备。PCI总线规范在20世纪90年代提出以后,其逐渐取代了其它各种总线,被各种处理器所支持。直到现在…...
Vue-10、Vue键盘事件
1、vue中常见的按键别名 回车 ---------enter <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>键盘事件</title><!--引入vue--><script type"text/javascript" src"h…...
胡圆圆的暑期实习经验分享
背景 实验室一般是在研究生二年级的时候会放实习,在以后的日子就是自己完成毕业工作要求,基本上不再涉及实验室的活了,目前是一月份也是开始准备暑期实习的好时间。实验室每年这个时候都会有学长学姐组织暑期实习经验分享,本着不…...
基于uniapp封装的table组件
数据格式 tableData: [{elcInfo: [{tableData:[1,293021.1,293021.1,293021.1,293021.1,]}]},{elcInfo: [{tableData:[1,293021.1,293021.1,293021.1,293021.1,]}]},{elcInfo: [{tableData:[1,293021.1,293021.1,293021.1,293021.1,]}]},/* {title: "2",elcInfo: [{…...
Git删除远程仓库某次提交记录后的所有提交
1、鼠标右键->git bash here,然后cd切换到代码目录; 2、git log查看提交记录,获取commit id 3、git reset commit id(commit id指要保留的最新的提交记录id) 4、git push --force,强制push 如果出现…...
强化学习10——免模型控制Q-learning算法
Q-learning算法 主要思路 由于 V π ( s ) ∑ a ∈ A π ( a ∣ s ) Q π ( s , a ) V_\pi(s)\sum_{a\in A}\pi(a\mid s)Q_\pi(s,a) Vπ(s)∑a∈Aπ(a∣s)Qπ(s,a) ,当我们直接预测动作价值函数,在决策中选择Q值最大即动作价值最大的动作&…...
【数据库】CRUD常用函数UNION 和 UNION ALL
文章目录 一、CRUD二、函数2.1 字符函数 (Character Functions):2.2 数字函数 (Numeric Functions):2.3 日期函数 (Date Functions):2.4 流程控制函数:2.5 聚合函数: 三、UNION 和 UNION ALL3.1 UNION:3.2 UNION ALL3.3 注意事项 一、CRUD CRUD 是指数据库操作的四…...
Adding Conditional Control to Text-to-Image Diffusion Models——【论文笔记】
本文发表于ICCV2023 论文地址:ICCV 2023 Open Access Repository (thecvf.com) 官方实现代码:lllyasviel/ControlNet: Let us control diffusion models! (github.com) Abstract 论文提出了一种神经网络架构ControlNet,可以将空间条件控制添加到大型…...
Python与人工智能
Python 是一种广泛用于人工智能(AI)开发的编程语言。Python具有简洁的语法和强大的库支持,使其成为数据科学、机器学习和深度学习的理想选择。 Python中有许多库可以帮助实现人工智能,其中最流行的包括TensorFlow和PyTorch。这些…...
【Docker】Docker基础
文章目录 安装使用帮助启动命令镜像命令容器命令 安装 # 卸载旧版本 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine # 设置存储库 sudo yum install -y yum-utils …...
linux异常情况,排查处理中
登录客户环境后,发现一个奇怪情况如下图,之前也遇到过,直接fuser -ck /backup操作的话,主机将会重启,因数据库运行中,等待停机维护时间,同时也在想办法不重启的情况下解决该问题 [rootdb ~]# f…...
Spring Boot参数校验方案
NotNull:值不能为null;NotEmpty:字符串、集合或数组的值不能为空,即长度大于0;NotBlank:字符串的值不能为空白,即不能只包含空格;Size:字符串、集合或数组的大小是否在指…...
【漏洞复现】ActiveMQ反序列化漏洞(CVE-2015-5254)
Nx01 产品简介 Apache ActiveMQ是Apache软件基金会所研发的开放源代码消息中间件。ActiveMQ是消息队列服务,是面向消息中间件(MOM)的最终实现,它为企业消息传递提供高可用、出色性能、可扩展、稳定和安全保障。 Nx02 漏洞描述 Re…...
面试题:MySQL误删表数据,如何快速恢复丢失的数据?
相信后端研发的同学在开发过程经常会遇到产品临时修改线上数据的需求,如果手法很稳那么很庆幸可以很快完成任务,很不幸某一天突然手一抖把表里的数据修改错误或者误删了,这个时候你会发现各种问题反馈接踵而来。 如果身边有BDA或者有这方面经…...
李沐之神经网络基础
目录 1.模型构造 1.1层和块 1.2自定义块 1.3顺序块 1.4在前向传播函数中执行代码 2.参数管理 2.1参数访问 2.2参数初始化 3.自定义层 3.1不带参数的层 3.2带参数的层 4.读写文件 4.1加载和保存张量 4.2加载和保存模型参数 1.模型构造 1.1层和块 import torch fr…...
网站建设项目团队/网络营销案例分析论文
删除 Microsoft SQL Server 2000 前应考虑的事项 删除 SQL Server 的步骤 删除 SQL Server 的特定实例 删除 SQL Server 的所有已知实例 删除 SQL Server 的默认实例 删除 SQL Server 的命名实例 如何包含全文检索删除 重新安装 SQL Server 前删除临时文件夹中的内容 参考 这篇…...
去国外政府网站做轮胎认证/杭州百度
本文为德国弗里恩大学(作者:ChristianDamm)的硕士论文,共54页。 随着自动驾驶车辆的不断普及,避障等挑战变得越来越重要。为了实现避障,可靠的障碍物检测是前提条件之一。虽然普通的自动驾驶车辆主要使用相…...
网站建设服务哪家便宜/湖南广告优化
把瞬间服务器的请求处理换成异步处理,缓解服务器的压力,实现数据顺序排列获取。本文主要和大家分享php和redis如何实现消息队列,希望能帮助到大家。 redis实现消息队列步骤如下: 1).redis函数rpush,lpop 2࿰…...
wordpress 爱主题/千锋教育课程
手机自带的无线投屏总说找不到设备?“爱奇艺的视频可以投屏到电视。但手机自带的无线投屏总说找不到设备?”这是一位网友在知乎上的咨询。经过详细了解,它的电视是海信液晶电视,手机是魅族的;平时能够通过爱奇艺、腾讯…...
wordpress用户名是哪个文件/军事新闻头条最新消息
1.确保PIP的存在2.CMD命令进入C:\Python34\Scripts里面后再执行PIP命令安装pip install wheel # D: 和cd 地址3.把文件最好放在\Script文件夹里面再pip install xxxx.whl4.注意whl文件名不能改 必须一模一样和原名当然如果网上有包的话你可以直接pip install…...
网站栏目标签如何调用/营销策划公司 品牌策划公司
来源:AI科技评论我们什么时候才能拥有在各方面能够模仿人脑的人工智能?专家们对这个问题意见不一。但大家都同意的是,目前的人工智能系统与人类的智力相去甚远。直接表现是:AI只在特定任务中表现优异,无法将其能力扩展…...