当前位置: 首页 > news >正文

第九部分 使用函数 (三)

目录

一、文件名操作函数

1、dir

2、notdir

3、suffix

4、basename

5、addsuffix

6、addprefix

7、join


一、文件名操作函数

下面我们要介绍的函数主要是处理文件名的。每个函数的参数字符串都会被当做一个或是 一系列的文件名来对待。

1、dir

$(dir <names..>)

名称:取目录函数——dir。

功能:从文件名序列中取出目录部分。目录部分是指最后一个反斜杠(“/”)之前 的部分。如果没有反斜杠,那么返回“./”。

返回:返回文件名序列的目录部分。

示例: $(dir src/foo.c hacks)返回值是“src/ ./”。

2、notdir

$(notdir <names...>)

名称:取文件函数——notdir。

功能:从文件名序列中取出非目录部分。非目录部分是指最后一个反斜杠(“ /”) 之后的部分。

返回:返回文件名序列的非目录部分。

示例: $(notdir src/foo.c hacks)返回值是“foo.c hacks”。

3、suffix

$(suffix <name...>)

名称:取后缀函数——suffix。

功能:从文件名序列中取出各个文件名的后缀。

返回:返回文件名序列的后缀序列,如果文件没有后缀,则返回空字串。

示例:$(suffix src/foo.c src-1.0/bar.c hacks)返回值是“.c .c”。

4、basename

$(basename <names...>)

名称:取前缀函数——basename。

功能:从文件名序列中取出各个文件名的前缀部分。

返回:返回文件名序列的前缀序列,如果文件没有前缀,则返回空字串。

示例:$(basename src/foo.c src-1.0/bar.c hacks)返回值是“src/foo src-1.0/b ar hacks”。

5、addsuffix

$(addsuffix <suffix>,<names...>)

名称:加后缀函数——addsuffix。

功能:把后缀加到中的每个单词后面。

返回:返回加过后缀的文件名序列。

示例:$(addsuffix .c,foo bar)返回值是“foo.c bar.c”。

6、addprefix

$(addprefix <prefix>,<names...>)

名称:加前缀函数——addprefix。

功能:把前缀加到中的每个单词后面。

返回:返回加过前缀的文件名序列。

示例:$(addprefix src/,foo bar)返回值是“src/foo src/bar”。

7、join

$(join <list1>,<list2>)

名称:连接函数——join。

功能:把中的单词对应地加到的单词后面。如果的单词个数要比 的多,那么,中的多出来的单词将保持原样。如果的单词个数要比 多,那么,多出来的单词将被复制到中。

返回:返回连接过后的字符串。

示例:$(join aaa bbb , 111 222 333)返回值是“aaa111 bbb222 333”。

相关文章:

第九部分 使用函数 (三)

目录 一、文件名操作函数 1、dir 2、notdir 3、suffix 4、basename 5、addsuffix 6、addprefix 7、join 一、文件名操作函数 下面我们要介绍的函数主要是处理文件名的。每个函数的参数字符串都会被当做一个或是 一系列的文件名来对待。 1、dir $(dir <names..>…...

基础命令继续

1&#xff1a;创建目录命令 mkdir命令 注意&#xff1a;创建文件夹需要修改权限&#xff0c;请确保操作均在HOME目录内&#xff0c;不要在Home外操作&#xff0c;涉及到权限问题&#xff0c;HOME外无法识别 小结&#xff1a; 练习: 2&#xff1a;touch创建文件 2&#xff1a;c…...

uni-app做A-Z排序通讯录、索引列表

上图是效果图&#xff0c;三个问题 访问电话通讯录&#xff0c;拿数据拿到用户的联系人数组对象&#xff0c;之后根据A-Z排序根据字母索引快速搜索 首先说数据怎么拿 - 社区有指导https://ask.dcloud.net.cn/question/64117 uniapp 调取通讯录 // #ifdef APP-PLUSplus.contac…...

Codeforces Round 768 (Div. 1) D. Flipping Range(思维题 等价类性质 dp)

题目 思路来源 官方题解 洛谷题解 题解 可操作的最短区间长度肯定是gcd&#xff0c;记为g&#xff0c;然后考虑如何dp 考虑g个等价类&#xff0c;每个等价类i,ig,i2*g,... 每次翻转长度为g的区间&#xff0c;会同时影响到g个等价类总的翻转的奇偶性&#xff0c; 性质一&…...

springboot集成kafka消费数据

springboot集成kafka消费数据 文章目录 springboot集成kafka消费数据1.引入pom依赖2.添加配置文件2.1.添加KafkaConsumerConfig.java2.2.添加KafkaIotCustomProperties.java2.3.添加application.yml配置 3.消费者代码 1.引入pom依赖 <dependency><groupId>org.spri…...

单例模式---JAVA

目录 “饿汉”模式 完整代码 “懒汉”模式 完整代码 单例模式&#xff1a;保证某个类在程序中只存在唯一一份实例, 而不会创建出多个实例。 单例模式可以通过实例创建的时间来分为两种&#xff1a;“饿汉”和“懒汉”模式。 “饿汉”模式 所谓的“饿汉”模式实则就是在类…...

maven管理使用

maven基本使用 一、简介二、配置文件三、项目结构maven基本标签实践(例子) 四、pom插件配置五、热部署六、maven 外部手动加载jar打包方式Maven上传私服或者本地 一、简介 基于Ant 的构建工具,Ant 有的功能Maven 都有,额外添加了其他功能.本地仓库:计算机中一个文件夹,自己定义…...

如何在一个系统中同时访问异构的多种数据库

如何在一个系统中同时访问异构的多种数据库 比如在一个系统中&#xff0c;要同时访问MySQL,H2, MsAccess, Mongodb. 要是使用Hibernate, MyBatis这些ORM&#xff0c;难度简直不敢想像。 要是MySQL还使用了分库分表&#xff0c;那更加不得了&#xff0c;一大堆的组件都要配合着…...

半监督学习 - 半监督聚类(Semi-Supervised Clustering)

什么是机器学习 半监督聚类是一种集成了有标签数据和无标签数据的聚类方法&#xff0c;其目标是在聚类的过程中利用有标签数据的信息来提高聚类性能。在半监督聚类中&#xff0c;一部分数据集有已知的标签&#xff0c;而另一部分没有标签。 以下是半监督聚类的基本思想和一些…...

实现STM32烧写程序-(3) Hex文件结构

简介 要对STM32进行更新动作, 就需要对程序文件进行解析, 大部分编译的生成程序文件是Hex或者Bin, 先来看看Hex的结构吧。 资料 Hex文件 简介 Hex文件格式最早由Intel公司于1973年创建。它最初是为了在Intel 8080微处理器上存储和传输二进制数据而设计的。随后&#xff0c;Hex…...

精品量化公式——“区域突破”,应对当下行情较好的主图看盘策略

不多说&#xff0c;直接上效果如图&#xff1a; ► 日线表现 代码评估 技术指标代码评估&#xff1a; VAR1, VAR2, VAR3&#xff1a;这些变量是通过指数移动平均&#xff08;EMA&#xff09;计算得出的。EMA是一种常用的技术分析工具&#xff0c;用于平滑价格数据并减少市场“…...

自然语言处理5——发掘隐藏规律 - Python中的关联规则挖掘

目录 写在开头1. 了解关联规则挖掘的概念和实际应用1.1 关联规则挖掘在市场分析和购物篮分析中的应用1.2 关联规则的定义和基本原理1.3 应用场景2. 使用Apriori算法和FP-growth算法进行关联规则挖掘2.1 Apriori算法的工作原理和实现步骤2.2 FP-growth算法的优势和使用方法2.3 A…...

【记录】重装系统后的软件安装

考完研重装了系统&#xff0c;安装软件乱七八糟&#xff0c;用到什么装什么。在这里记录一套标准操作&#xff0c;备用。一个个装还是很麻烦&#xff0c;我为什么不直接写个脚本直接下载安装包呢&#xff1f;奥&#xff0c;原来是我太菜了还不会写脚本啊&#xff01;先记着吧&a…...

Android 13 - Media框架(31)- ACodec(七)

之前的章节中我们解了 input buffer 是如何传递给 OMX 的&#xff0c;以及Output buffer 是如何分配并且注册给 OMX 的。这一节我们就来看ACodec是如何处理OMX的Callback的。 1、OMXNodeInstance Callback 这一节我们只大致记录Callback是如何传递给ACodec的。在之前的学习中我…...

快速了解VR全景拍摄技术运用在旅游景区的优势

豆腐脑加了糖、烤红薯加了勺&#xff0c;就连索菲亚大教堂前都有了“人造月亮”&#xff0c;在这个冬季&#xff0c;“尔滨”把各地游客宠上了天。面对更多的游客无法实地游玩&#xff0c;哈尔滨冰雪世界再添新玩法&#xff0c;借助VR全景拍摄技术对冬季经典冰雪体验项目进行全…...

分布形态的度量_峰度系数的探讨

集中趋势和离散程度是数据分布的两个重要特征,但要全面了解数据分布的特点&#xff0c;还应掌握数据分布的形态。 描述数据分布形态的度量有偏度系数和峰度系数, 其中偏度系数描述数据的对称性,峰度系数描述与正态分布的偏离程度。 峰度系数反映分布峰的尖峭程度的重要指标. 当…...

HCIP 重发布

拓扑图&IP划分如下&#xff1a; 第一步&#xff0c;配置接口IP&环回地址 以R1为例&#xff0c;R2~R4同理 interface GigabitEthernet 0/0/0 ip address 12.1.1.1 24 interface GigabitEthernet 0/0/1 ip address 13.1.1.1 24 interface LoopBack 0 ip address 1.1.1.…...

FX图中的节点代表什么操作

在 FX 图中&#xff0c;每个节点代表一个操作。这些操作可以是函数调用、方法调用、模块实例调用&#xff0c;也可以是 torch.nn.Module 实例的调用。每个节点都对应一个调用站点&#xff0c;如运算符、方法和模块。 一.节点操作 下面是一些节点可能代表的操作&#xff1a; 1…...

【Java 设计模式】创建型之单例模式

文章目录 1. 定义2. 应用场景3. 代码实现1&#xff09;懒汉式2&#xff09;饿汉式 4. 应用示例结语 在软件开发中&#xff0c;单例模式是一种常见的设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供一个全局访问点。单例模式在需要控制某些资源&#xff0c;如数…...

FlinkAPI开发之窗口(Window)

案例用到的测试数据请参考文章&#xff1a; Flink自定义Source模拟数据流 原文链接&#xff1a;https://blog.csdn.net/m0_52606060/article/details/135436048 窗口的概念 Flink是一种流式计算引擎&#xff0c;主要是来处理无界数据流的&#xff0c;数据源源不断、无穷无尽。…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...