当前位置: 首页 > news >正文

基于Harris角点的多视角图像全景拼接算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Harris角点检测

4.2 图像配准

4.3 图像变换和拼接

4.4 全景图像优化

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

 
function [ImageB] = func_stitch(ImageA, ImageB)% 获取ImageA和ImageB的尺寸  RR1 = size(ImageA,1);CC1 = size(ImageA,2);RR2 = size(ImageB,1);CC2 = size(ImageB,2);%角点检测  jiaodian_imageB    = corner_detector(ImageB);%提取角点  [xh,yh,~]          = anms(jiaodian_imageB, 300);%对提取的角点计算特征描述子[Pcorner]          = feat_desc_geoblur(ImageB, xh, yh);%角点检测 jiaodian_imageA    = corner_detector(ImageA);%提取角点[xh2, yh2, ~]      = anms(jiaodian_imageA, 300);%对提取的角点计算特征描述子[Pcorner2]         = feat_desc_geoblur(ImageA, xh2, yh2);% 对两张图像的特征描述子进行匹配[Pmatch]           = feat_match(Pcorner2, Pcorner);% 提取匹配成功的点  X_mh1 = xh2(Pmatch ~= -1);Y_mh1 = yh2(Pmatch ~= -1);X_mh2 = xh(Pmatch(Pmatch ~= -1));Y_mh2 = yh(Pmatch(Pmatch ~= -1));% 剔除误匹配点 [H, ~] = ransac_est_homography(X_mh1, Y_mh1, X_mh2, Y_mh2, 10);% 计算两张图像到各自边界的距离  ImageA_dist = dist2border(ImageA);ImageB_dist = dist2border(ImageB);% 计算img_i四个角的映射坐标 ul = H*[1 1 1]'; ul = ul/ul(end);ur = H*[CC1, 1, 1]'; ur = ur/ur(end);bl = H*[1, RR1, 1]'; bl = bl/bl(end);br = H*[CC1, RR1, 1]'; br = br/br(end);% 根据映射坐标确定需要填充的边界  Edge_up    = 0;  Edge_L     = 0;Edge_dw    = 0;Edge_R     = 0;if max(br(1),ur(1)) > CC2Edge_R = round(max(br(1),ur(1))-CC2+30);ImageB = padarray(ImageB, [0, Edge_R], 'post');endif max(br(2), bl(2)) > RR2Edge_dw = round(max(br(2), bl(2))-RR2+30);ImageB = padarray(ImageB, [Edge_dw, 0], 'post');endif min(ul(1), bl(1)) <= 0 Edge_L = round(-min(ul(1), bl(1))+30);ImageB = padarray(ImageB, [0, Edge_L], 'pre');endif min(ul(2), ur(2)) <= 0Edge_up = round(-min(ul(2), ur(2)) + 30);ImageB = padarray(ImageB, [Edge_up, 0], 'pre');end% 计算单应性矩阵的逆H_inv = inv(H);% 创建一个网格,用于映射img_b上的每个像素到img_i上的坐标    [yh, xh] = meshgrid(round(Edge_up+min(ul(2), ur(2))):round(Edge_up+max(bl(2), br(2))), round(Edge_L+min(ul(1), bl(1))):round(Edge_L+max(br(1),ur(1))));yh = yh(:); xh = xh(:);xy  = H_inv*[xh - Edge_L, yh - Edge_up, ones(size(xh,1),1)]';xh2 = int64(xy(1,:)'./xy(3,:)'); yh2 = int64(xy(2,:)'./xy(3,:)');
................................................................................
end
0102

4.算法理论概述

        基于Harris角点的多视角图像全景拼接算法是一种在计算机视觉和图像处理领域中广泛应用的算法,用于将来自不同视角的多个图像拼接成一个全景图像。该算法主要依赖于特征点检测和图像配准技术,Harris角点检测是其中的关键步骤之一。

4.1 Harris角点检测

       Harris角点检测是一种基于图像局部自相关函数变化的角点检测方法。对于图像I(x,y),在每个像素点(x,y)处定义一个窗口,计算窗口内像素的灰度变化。Harris角点检测通过计算角点响应函数R来确定角点的位置:

        Ix​和Iy​分别是图像在x和y方向的梯度,w(x,y)是一个窗口函数,通常使用高斯函数。det(M)表示矩阵M的行列式,trace(M)表示矩阵M的迹,k是一个经验常数,通常取值为0.04~0.06。

        Harris角点检测通过计算每个像素点的角点响应函数R,并设置合适的阈值来筛选出角点。这些角点将作为后续图像配准和拼接的基础。

4.2 图像配准

        图像配准是将不同视角下的图像对齐的过程。在基于Harris角点的多视角图像全景拼接算法中,图像配准主要通过特征点匹配来实现。

       特征点提取:使用Harris角点检测算法从每个图像中提取出角点作为特征点。

       特征点描述:对每个特征点周围的图像区域进行描述,生成特征描述符。常用的特征描述符有SIFT、SURF等。

       特征点匹配:通过比较特征描述符之间的相似度,找到不同图像之间匹配的特征点对。常用的特征点匹配算法有暴力匹配、FLANN匹配等。

4.3 图像变换和拼接

        在找到匹配的特征点对后,需要通过图像变换将不同视角下的图像对齐到同一个坐标系下,然后进行拼接。

4.4 全景图像优化

拼接后的全景图像可能存在一些拼接缝和畸变,需要进行优化处理。

拼接缝消除:通过图像融合技术,将拼接缝附近的像素进行平滑过渡,消除拼接缝。

畸变校正:根据相机的畸变模型,对全景图像进行畸变校正,提高图像质量。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于Harris角点的多视角图像全景拼接算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 Harris角点检测 4.2 图像配准 4.3 图像变换和拼接 4.4 全景图像优化 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 function [ImageB…...

数学建模--PageRank算法的Python实现

文章目录 1. P a g e R a n k PageRank PageRank算法背景2. P a g e R a n k PageRank PageRank算法基础2.1. P a g e R a n k PageRank PageRank问题描述2.2.有向图模型2.3.随机游走模型 3. P a g e R a n k PageRank PageRank算法定义3.1. P a g e R a n k PageRank PageRank…...

samba服务搭建,并将共享目录映射到windows

系统版本&#xff1a;centos7 1、centos 安装samba yum -y install samba 2、查看安装信息 rpm -qa |grep samba 3、设置开机自启动 systemctl enable smb.service systemctl enable nmb.service 4、设置samba服务器配置文件 sudo vi /etc/samba/smb.conf 注意&#…...

golang 中使用 statik 将静态资源编译进二进制文件中

现在的很多程序都会提供一个 Dashboard 类似的页面用于查看程序状态并进行一些管理的功能&#xff0c;通常都不会很复杂&#xff0c;但是其中用到的图片和网页的一些静态资源&#xff0c;如果需要用户额外存放在一个目录&#xff0c;也不是很方便&#xff0c;如果能打包进程序发…...

北京住总集团携手云轴科技ZStack获行业云平台领航者创新实践奖

为进一步促进行业企业上云、用数、赋智发展&#xff0c;落实国家政策&#xff0c;加速云计算应用从互联网拓展至政务、金融、交通、电信等行业&#xff0c;推动以云计算为核心的数字产业创新&#xff0c;1月18日中国信息通信研究院主办的“企业上云用云专项行动会—行业云平台研…...

【漏洞攻击之文件上传条件竞争】

漏洞攻击之文件上传条件竞争 wzsc_文件上传漏洞现象与分析思路编写攻击脚本和重放措施中国蚁剑拿flag wzsc_文件上传 漏洞现象与分析 只有一个upload前端标签元素&#xff0c;并且上传任意文件都会跳转到upload.php页面&#xff0c;判定是一个apache容器&#xff0c;开始扫描…...

Buttton样式设置background属性失效的问题

最近遇到一个之前没有遇见的问题&#xff0c;就是在添加Button控件的时候发现对其设置background时没有效果&#xff0c;原因是AndroidStudio升级后默认按钮就是主题色&#xff0c;一个比较简单的方法是将Button改为android.widget.Button&#xff0c;对比效果如下&#xff1a;…...

使用vue-pdf插件加载pdf

安装&#xff1a; // 安装这个版本&#xff0c;其它版本会有千奇百怪的错&#xff0c;这个版本和4.0.0都是可以的 cnpm install vue-pdf4.2.0// 安装pdfjs-dist cnpm install pdfjs-dist2.5.207 使用&#xff1a; // 我的css样式是pxToRem&#xff0c;友友们使用可能样式会有…...

BP蓝图映射到C++笔记1

教程链接&#xff1a;示例1&#xff1a;CompleteQuest - 将蓝图转换为C (epicgames.com) 1.常用的引用需要记住&#xff0c;如图所示。 2.蓝图中可以调用C函数&#xff0c;也可以实现C函数 BlueprintImplementableEvent:C只创建&#xff0c;不实现&#xff0c;在蓝图中实现 B…...

龙芯+RT-Thread+LVGL实战笔记(30)——电子琴演奏

【写在前面】正值期末,笔者工作繁忙,因此本系列教程的更新频率有所放缓,还望订阅本专栏的朋友理解,请勿催更。笔者在此也简要声明几点: 有些硬件模块笔者并没有,如LED点阵、压力传感模块、RFID模块等,因此这些模块的相关任务暂时无法给出经过验证的代码。其实,教程进行…...

Python Process创建进程(2种方法)详解

虽然使用 os.fork() 方法可以启动多个进程&#xff0c;但这种方式显然不适合 Windows&#xff0c;而 Python 是跨平台的语言&#xff0c;所以 Python 绝不能仅仅局限于 Windows 系统&#xff0c;因此 Python 也提供了其他方式在 Windows 下创建新进程。 Python 在 multiproces…...

树莓派4B 使用树莓派官方烧录器烧录ubuntu20.04.5 排坑

问题描述&#xff1a; 使用树莓派官方烧录器烧录ubuntu并且在烧录器中设置了电脑热点&#xff0c;但是无法连接WIFI。重启后也无效。 排坑&#xff1a; 1.首先打开/boot中的network-config&#xff0c;发现烧录器设置的密码是乱码&#xff0c;重新设置&#xff1b; 2.有博主说…...

鸿蒙开发(五)鸿蒙UI开发概览

从用户角度来讲&#xff0c;一个软件拥有好看的UI&#xff0c;那是锦上添花的事情。再精确的算法&#xff0c;再厉害的策略&#xff0c;最终都得通过UI展现给用户并且跟用户交互。那么&#xff0c;本篇一起学习下鸿蒙开发UI基础知识&#xff0c;认识下各种基本控件以及使用方式…...

应用层—HTTP详解(抓包工具、报文格式、构造http等……)

文章目录 HTTP1. 抓包工具的使用1.1 配置信息1.2 观察数据 2. 分析 https 抓包结果3. HTTP请求详解3.1 认识 URL3.1.1 URL 基本格式3.1.2 查询字符串 (query string)3.1.3 关于 URL Encode 3.2 认识 http 方法3.2.1 [经典问题] Get 和 Post 主要的区别是什么&#xff1f;&#…...

ISA Server 2006部署网站对比nginx

2024年了&#xff0c;我还是第1次使用ISA Server 。没办法在维护一个非常古老的项目。说到ISA Server可能有小伙们不清楚&#xff0c;但是说到nginx大家应该都知道吧。虽然他们俩定位并不相同&#xff0c;但是本文中提到的需求&#xff0c;他俩是都可以实现。 网上找的到的教程…...

CHAPTER 9: 《DESIGN A WEB CRAWLER》第9章 《设计一个web爬虫》

CHAPTER 9: 《DESIGN A WEB CRAWLER》第九章 设计一个web爬虫 在本章中&#xff0c;我们将重点介绍网络爬虫设计&#xff1a;一种有趣而经典的系统设计 面试问题。 网络爬虫被称为机器人或蜘蛛。它被搜索引擎广泛用于发现网络上的新内容或更新内容。内容可以是网页、图像、视频…...

java SSM网上小卖部管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM网上小卖部管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源 代码和数据库&#xff0c;系统主要…...

Java中集合元素的删除

关于集合元素的remove 重点&#xff1a;当集合的结构发生改变时&#xff0c;迭代器必须重新获取&#xff0c;如果还是用以前老的迭代器&#xff0c;会出现异常 java.util.ConcurrentModificationException 重点&#xff1a;在迭代集合元素的过程中&#xff0c;不能调用集合对象…...

HNU-数据挖掘-实验2-数据降维与可视化

数据挖掘课程实验实验2 数据降维与可视化 计科210X 甘晴void 202108010XXX 文章目录 数据挖掘课程实验<br>实验2 数据降维与可视化实验背景实验目标实验数据集说明实验参考步骤实验过程1.对数据进行初步降维2.使用无监督数据降维方法&#xff0c;比如PCA&#xff0c;I…...

【shell编程入门】正则表达式

正则表达式 特殊字符描述[]方括号表达式&#xff0c;表示匹配的字符集合&#xff0c;例如 [0-9]、[abcde]()标记子表达式起止位置*匹配前面的子表达式零或多次匹配前面的子表达式一或多次?匹配前面的子表达式零或一次\转义字符&#xff0c;除了常用转义外&#xff0c;还有&am…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...

在Zenodo下载文件 用到googlecolab googledrive

方法&#xff1a;Figshare/Zenodo上的数据/文件下载不下来&#xff1f;尝试利用Google Colab &#xff1a;https://zhuanlan.zhihu.com/p/1898503078782674027 参考&#xff1a; 通过Colab&谷歌云下载Figshare数据&#xff0c;超级实用&#xff01;&#xff01;&#xff0…...