当前位置: 首页 > news >正文

ChatPromptTemplate和AI Message的用法

ChatPromptTemplate的用法

用法1:


from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChainprompt= ChatPromptTemplate.from_template("tell me the weather of {topic}")
str = prompt.format(topic="shenzhen")
print(str)

打印出:

Human: tell me the weather of shenzhen

最终和llm一起使用:

import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplatefrom langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChainprompt = ChatPromptTemplate.from_template("who is {name}")
# str = prompt.format(name="Bill Gates")
# print(str)
llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
chain05 = prompt| llm | output_parser
print(chain05.invoke({"name": "Bill Gates"}))

用法2:

import ChatGLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplateprompt = ChatPromptTemplate.from_messages([("system", "You are a helpful AI bot. Your name is {name}."),("human", "Hello, how are you doing?"),("ai", "I'm doing well, thanks!"),("human", "{user_input}"),])llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
chain05 = prompt| llm | output_parser
print(chain05.invoke({"name": "Bob","user_input": "What is your name"}))

也可以这样:

import ChatGLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplatellm = ChatGLM.ChatGLM_LLM()prompt = ChatPromptTemplate.from_messages([("system", "You are a helpful AI bot. Your name is {name}."),("human", "Hello, how are you doing?"),("ai", "I'm doing well, thanks!"),("human", "{user_input}"),])# a = prompt.format_prompt({name="Bob"})a = prompt.format_prompt(name="Bob",user_input="What is your name") 
print(a)
print(llm.invoke(a))

参考: https://python.langchain.com/docs/modules/model_io/prompts/quick_start
https://python.langchain.com/docs/modules/model_io/prompts/composition

相关文章:

ChatPromptTemplate和AI Message的用法

ChatPromptTemplate的用法 用法1: from langchain.chains import LLMChain from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_community.tools.tavily_search import TavilySear…...

Terraform实战(三)-在AWS上尝试Terraform的Vault Provider

使用自Terraform 0.8起添加的Vault Provider后,aws云基础设施尝试从Vault而不是tfvars或环境变量中读取AWS凭证。 1 什么是vault? vault是一种由Hashicorp发布的用于管理机密信息的工具。 2 aws使用Terraform的Vault Provider 2.1 创建静态密钥 以开…...

【Nicn的刷题日常】之有序序列合并

1.题目描述 描述 输入两个升序排列的序列,将两个序列合并为一个有序序列并输出。 数据范围: 1≤�,�≤1000 1≤n,m≤1000 , 序列中的值满足 0≤���≤30000 0≤val≤30000 输入描述…...

PostgreSql与Postgis安装

POstgresql安装 1.登录官网 PostgreSQL: Linux downloads (Red Hat family) 2.选择版本 3.安装 ### 源 yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm ### 客户端 yum install postgresql14 ###…...

【Spring连载】使用Spring Data访问Redis(九)----Redis流 Streams

【Spring连载】使用Spring Data访问Redis(九)----Redis流 Streams 一、追加Appending二、消费Consuming2.1 同步接收Synchronous reception2.2 通过消息监听器容器进行异步接收Asynchronous reception through Message Listener Containers2.2.1 命令式I…...

MySQL:从基础到实践(简单操作实例)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 下载前言一、MySQL是什么?二、使用步骤1.引入库2.读入数据 提交事务查询数据获取查询结果总结 下载 点击下载提取码888999 前言 在现代信息技术的世界…...

Flink流式数据倾斜

1. 流式数据倾斜 流式处理的数据倾斜和 Spark 的离线或者微批处理都是某一个 SubTask 数据过多这种数据不均匀导致的,但是因为流式处理的特性其中又有些许不同 2. 如何解决 2.1 窗口有界流倾斜 窗口操作类似Spark的微批处理,直接两阶段聚合的方式来解决…...

零基础学编程系列,从入门到精通,中文编程开发语言工具下载,编程构件容器件之控制面板构件用法

零基础学编程系列,从入门到精通,中文编程开发语言工具下载,编程构件容器件之控制面板构件用法 一、前言 编程入门视频教程链接 https://edu.csdn.net/course/detail/39036 编程工具及实例源码文件下载可以点击最下方官网卡片——软件下载…...

使用PowerBI 基于Adventure Works案例分析

Adventure Works案例分析 前言 数据时代来临,但一个人要顺应时代的发展是真理。 数据分析的核心要素 那数分到底是什么? 显然DT 并不等同于 IT,我们需要的不仅仅是更快的服务器、更多的数据、更好用的工具。这些都是重要的组成部分&…...

人工智能之估计量评估标准及区间估计

评估估计量的标准 无偏性:若估计量( X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1​,X2​,⋯,Xn​)的数学期望等于未知参数θ,即 E ( θ ^ ) = θ E(\hat\theta)=\theta E(θ^)=θ 则称 θ ^ \hat\theta θ^为θ的无偏估计量。 估计量 θ ^ \hat\theta θ^的值不一定就是…...

Ubuntu权限相关命令

文章目录 文件夹/文件带锁(图标) 解锁无密码访问文件/目录sudo usermod -aG sudo your_username其他后记 命令参考: https://www.cnblogs.com/alongdidi/p/linux_ownership_permission.html 文件夹/文件带锁(图标) 解锁 递归解锁当前路径下的所有文件夹以及文件(包括子文件)su…...

RTE2023第九届实时互联网大会:揭秘未来互联网趋势,PPT分享引领行业新思考

随着互联网的不断发展,实时互动技术正逐渐成为新时代的核心驱动力。 在这样的背景下,RTE2023第九届实时互联网大会如期而至,为业界人士提供了一个探讨实时互联网技术、交流创新理念的绝佳平台。 本文将从大会内容、PPT分享价值等方面&#…...

Hadoop-生产调优

第1章 HDFS-核心参数 1.1 NameNode内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150 byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150byte ≈ 9.1 亿G MB KB Byte 2&#xff09…...

Elasticsearch基于分区的索引策略

分区索引,或者更常见的说法,基于分区的索引策略,是一种按照特定规则(如时间、地理位置、业务线等)将数据分散到多个不同的索引中的方法。这种做法可以提高Elasticsearch的性能和可管理性,尤其是在处理大量数…...

ASP.NET Core MVC 控制查询数据表后在视图显示

如果是手动写代码&#xff0c;不用VS自带的一些控件&#xff0c;那比较简单的方式就是把查询的数据集&#xff0c;逐条赋给对象模型&#xff0c;再加到List&#xff0c;最后在控制加到 ViewBag&#xff0c;视图循环显示ViewBag变量 控制器代码 List<Users> list new Li…...

C语言第二十弹---指针(四)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 指针 1、字符指针变量 2、数组指针变量 2.1、数组指针变量是什么&#xff1f; 2.2、数组指针变量怎么初始化 3、⼆维数组传参的本质 4、函数指针变量 4.1…...

常用排序算法(Java版本)

1 引言 常见的排序算法有八种&#xff1a;交换排序【冒泡排序、快速排序】、插入排序【直接插入排序、希尔排序】、选择排序【简单选择排序、堆排序】、归并排序、基数排序。 2 交换排序 所谓交换&#xff0c;就是序列中任意两个元素进行比较&#xff0c;根据比较结果来交换…...

CPP项目:Boost搜索引擎

1.项目背景 对于Boost库来说&#xff0c;它是没有搜索功能的&#xff0c;所以我们可以实现一个Boost搜索引擎来实现一个简单的搜索功能&#xff0c;可以更快速的实现Boost库的查找&#xff0c;在这里&#xff0c;我们实现的是站内搜索&#xff0c;而不是全网搜索。 2.对于搜索…...

【洛谷 P1616】疯狂的采药 题解(动态规划+完全背包)

疯狂的采药 题目背景 此题为纪念 LiYuxiang 而生。 题目描述 LiYuxiang 是个天资聪颖的孩子&#xff0c;他的梦想是成为世界上最伟大的医师。为此&#xff0c;他想拜附近最有威望的医师为师。医师为了判断他的资质&#xff0c;给他出了一个难题。医师把他带到一个到处都是草…...

L1-027 出租分数 20

下面是新浪微博上曾经很火的一张图&#xff1a; 一时间网上一片求救声&#xff0c;急问这个怎么破。其实这段代码很简单&#xff0c;index数组就是arr数组的下标&#xff0c;index[0]2 对应 arr[2]1&#xff0c;index[1]0 对应 arr[0]8&#xff0c;index[2]3 对应 arr[3]0&…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...