当前位置: 首页 > news >正文

网站无备案号怎么办/windows7系统优化工具

网站无备案号怎么办,windows7系统优化工具,湖北网站定制开发多少钱,简单的响应式网页📕参考:ysu老师课件西瓜书 1.决策树的基本概念 【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出&#xff…

📕参考:ysu老师课件+西瓜书 


1.决策树的基本概念

【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。

理解:它是一个树状结构,其中每个节点代表一个特征属性的判断,每个分支代表这个判断的结果,而每个叶节点(叶子)代表一种类别或回归值。

关于决策树要掌握的概念:

  1. 根节点(Root Node): 包含整个数据集,并通过某个特征属性进行判断。

  2. 分支(Branch): 从根节点出发的每个路径,代表在某个特征属性上的判断结果。

  3. 内部节点(Internal Node): 在决策路径上的非叶节点,表示对某个特征属性的判断。

  4. 叶节点(Leaf Node): 在决策路径上的末端节点,表示最终的类别或回归值。

决策树的优缺点:

优点:

  • 易于理解和解释: 决策树的图形化表示使得结果容易理解,可以可视化地表示整个决策过程。

  • 无需特征缩放: 不需要对特征进行标准化或归一化。

  • 处理混合数据类型: 可以处理既有连续型特征又有离散型特征的数据。

  • 能够捕捉特征之间的相互关系: 可以捕捉特征之间的非线性关系。

缺点:

  • 过拟合(Overfitting): 在处理复杂问题时容易生成过于复杂的树,导致在训练数据上表现良好但在未知数据上泛化能力差。

  • 对噪声敏感: 对数据中的噪声和异常值较为敏感。

  • 不稳定性: 数据的小变化可能导致生成完全不同的树。

 2.决策树的生成过程

决策树模型涉及到三个关键过程:

一是特征变量的选择,根据某个指标(如信息增益、基尼指数等)选择当前最佳的特征属性作为判断依据。

二是决策树的生成,常用的决策树算法有ID3、C4.5、CART等算法;

三是决策树的剪枝,通过剪枝来避免过拟合,提升对数据的预测效果。

2.1 特征变量的选择

最常用的三种特征选择策略:信息增益、信息增益比、Gini指数

2.1.1 信息增益

首先引入【信息量】。

消息中所包含的信息量大小与该消息所表示的事件出现的概率相关,如果一个消息所表示的事件是必然事件(发生概率100%),则该消息所包含的信息量为0;如果一个消息表示的不可能事件(发生概率极低),则该消息的信息量为无穷大。

比如:某同事跑过来和你说:“小王,明早太阳会从东方升起”。(概率为1,信息量为0)

信息量应该随着概率单调递减:某事件的概率越大,则信息量越小。

再引入【信息熵】。

“信息熵”用来表示信息不确定性的一种度量。熵越高表示越混乱,熵越低表示越有序。

(类比高中学的分子状态混乱程度,熵越大越混乱)

再引入【信息增益】。

“信息增益”表示在知道某个特征之后使得不确定性减少的程度(知道某个特征前的熵与知道某个特征之后的熵之差)。

根据某个变量将样本数据分割为多个子集,分割前与分割后样本数据的熵之差为信息增益,信息增益越高,表示该变量对样本数据的分类效果越好。

2.1.2 信息增益比

再引入【信息增益比】

以信息增益作为划分训练数据集的特征,存在偏向于选择取值较多的特征的问题,因此通过引入了【信息增益比】来解决该问题。

比如:以user_id为特征变量,由于每个人的user_id是唯一的,在每个user_id下可以完美地进行准确分类,但是这种情况显然是无意义的。

注:只有在不同变量分裂出不同个数子节点的情况下,信息增益比才会起作用。如果每个变量允许分裂相同个数的子节点,那么信息增益比并不起作用。

2.1.3 Gini指数

Gini指数也是衡量随机变量不纯度的一种方法,Gini指数越小,则表示变量纯度越高,Gini指数越大,表示变量纯度越低。

理解:

 Gini指数表示在样本集合中随机抽取两个样本,其类别不一致的概率。因此Gini指数越小,分类越纯。

2.2 决策树的生成

常用的决策树算法有:ID3、C4.5、CART

先介绍决策树生成时的三个【终止条件】:

  1. 当前节点包含的样本全部属于同一类别
  2. 当前节点已经没有样本,不能再继续划分
  3. 所有特征已经使用完毕

2.2.1 ID3——信息增益

ID3(Iterative Dichotomiser 3)是一种基于信息增益的决策树生成算法。

其主要步骤包括:

  1. 计算信息熵: 对每个特征计算数据集的信息熵,用于度量数据的不确定性。

  2. 计算信息增益: 对每个特征计算信息增益,选择信息增益最大的特征作为当前节点的划分特征。

  3. 划分数据集: 使用选择的最佳特征对数据集进行划分,生成相应的子集。

  4. 递归生成子树: 对每个子集递归地应用上述步骤,生成子树。

  5. 停止条件: 在递归生成子树的过程中,设置停止条件,例如树的深度达到预定值、节点包含的样本数小于某个阈值等。

【专业描述】

2.2.2 C4.5——信息增益比

C4.5算法整体上与ID3算法非常相似,不同之处是C4.5以信息增益比为准则来选择分枝变量。

2.2.3 CART——Gini指数

CART(Classification and Regression Trees)是一种基于Gini指数的决策树生成算法,可用于分类和回归任务。

其主要步骤包括:

  1. 计算Gini指数 对每个特征计算数据集的Gini指数,用于度量数据的不纯度。

  2. 选择最小Gini指数的特征: 选择Gini指数最小的特征作为当前节点的划分特征。

  3. 划分数据集: 使用选择的最佳特征对数据集进行划分,生成相应的子集。

  4. 递归生成子树: 对每个子集递归地应用上述步骤,生成子树。

  5. 停止条件: 在递归生成子树的过程中,设置停止条件,例如树的深度达到预定值、节点包含的样本数小于某个阈值等。

【专业描述】

注意:

CART是一种二叉树,即将所有问题看做二元分类问题。

由于CART是二叉树,在遇到连续变量或者多元分类变量时,存在寻找最优切分点的情况。

【补充】

CART的缺点

  1. 二元划分: CART算法每次划分只能选择一个特征的一个切分点进行二元划分,这可能导致树的结构相对较深,对某些问题可能不够简洁。

  2. 贪婪算法: CART是一种贪婪算法,它在每一步选择最优划分,但这并不一定会导致全局最优的决策树。有时候,全局最优的决策树需要考虑多步划分的组合,而CART只考虑当前最优的一步。

  3. 对于不平衡数据集的处理: 在处理不平衡数据集时,CART可能会偏向那些具有较多样本的类别,导致对于少数类的划分不够精细。

  4. 非平滑性: CART生成的树是非平滑的,对于输入空间的微小变化可能产生较大的输出变化,这使得CART对于输入空间的局部变化较为敏感。

两种决策的对比

  • 信息增益(ID3): 用于分类问题,通过选择能够最大程度降低不确定性的特征。

  • 基尼不纯度(CART): 适用于分类和回归问题,通过选择能够最小化不纯度的特征。

2.3 决策树的剪枝

决策树的剪枝是为了防止过拟合,即过度依赖训练数据而导致在未知数据上表现不佳。

剪枝通过修剪决策树的一部分来达到简化模型的目的。

剪枝分为预剪枝(Pre-pruning)和后剪枝(Post-pruning)两种类型。

2.3.1 预剪枝

在决策树生成的过程中,在每次划分节点之前,通过一些预定的规则判断是否继续划分。若当前结点的划分不能使决策树泛化性能提升,则停止划分并将当前结点记为叶结点,其类别标记为训练样例数最多的类别。

预剪枝的一些常见条件包括:

  • 树的深度限制: 设置树的最大深度,防止树过于复杂。
  • 节点样本数量限制: 当节点中的样本数量小于某个阈值时停止划分。
  • 信息增益或基尼不纯度阈值: 当划分节点后的信息增益或基尼不纯度低于设定的阈值时停止划分。

预剪枝的优缺点

优点:

  • 降低过拟合风险
  • 显著减少训练时间和测试时间开销

缺点:

  • 欠拟合风险:有些分支的当前划分虽然不能提升泛化性能,但在其基础上进行的后续划分却有可能导致性能显著提高。预剪枝基于“贪心”本质禁止这些分支展开,带来了欠拟合风险

2.3.2 后剪枝 

在决策树生成完成后,通过递归地从底部向上对节点进行判断,决定是否剪枝。

具体过程如下:

  • 从叶子节点开始: 递归地向上考察每个叶子节点。

  • 计算剪枝前后的性能: 对于每个叶子节点,计算剪枝前后在验证集上的性能差异。

  • 剪枝决策: 如果剪枝可以提高性能(如准确率、F1分数等),则进行剪枝,将该节点变为叶子节点。

  • 重复: 重复上述过程,直到找到合适的剪枝点或不再发生性能提升。

后剪枝相对于预剪枝更为灵活,因为它在生成完整的树之后才进行剪枝决策,可以更准确地评估每个子树的性能。

后剪枝的优缺点:

优点:

  • 后剪枝比预剪枝保留了更多的分支,欠拟合风险小,泛化性能往往优于预剪枝决策树

缺点

  • 训练时间开销大:后剪枝过程是在生成完全决策树之后进行的,需要自底向上对所有非叶结点逐一考察

3.代码实践

# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_text
from sklearn import tree
import matplotlib.pyplot as plt# 加载示例数据集(鸢尾花数据集)
iris = load_iris()
X = iris.data
y = iris.target# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建决策树模型
clf = DecisionTreeClassifier()# 训练模型
clf.fit(X_train, y_train)# 使用模型进行预测
y_pred = clf.predict(X_test)# 输出模型的准确率
accuracy = clf.score(X_test, y_test)
print(f"Model Accuracy: {accuracy:.2f}")# 输出决策树的规则
tree_rules = export_text(clf, feature_names=iris.feature_names)
print("Decision Tree Rules:\n", tree_rules)# 可视化决策树
fig, ax = plt.subplots(figsize=(12, 8))
tree.plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, ax=ax)
plt.show()

相关文章:

决策树的相关知识点

📕参考:ysu老师课件西瓜书 1.决策树的基本概念 【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出&#xff…...

【数据结构】单向链表实现 超详细

目录 一. 单链表的实现 1.准备工作及其注意事项 1.1 先创建三个文件 1.2 注意事项:帮助高效记忆和理解 2.链表的基本功能接口 2.0 创建一个 链表 2.1 链表的打印 3.链表的创建新节点接口 4.链表的节点插入功能接口 4.1 尾插接口 4.2 头插接口 4.3 指定位…...

Opencc4j 开源中文繁简体使用介绍

Opencc4j Opencc4j 支持中文繁简体转换,考虑到词组级别。 Features 特点 严格区分「一简对多繁」和「一简对多异」。 完全兼容异体字,可以实现动态替换。 严格审校一简对多繁词条,原则为「能分则不合」。 词库和函数库完全分离&#xff0c…...

vue 下载二进制文件

文章目录 概要技术细节 概要 vue 下载后端返回的二进制文件流 技术细节 import axios from "axios"; const baseUrl process.env.VUE_APP_BASE_API; //downLoadPdf("/pdf/download?pdfName" res .pdf, res); export function downLoadPdf(str, fil…...

数据结构之堆排序

对于几个元素的关键字序列{K1,K2,…,Kn},当且仅当满足下列关系时称其为堆,其中 2i 和2i1应不大于n。 { K i ≤ K 2 i 1 K i ≤ K 2 i 或 { K i ≥ K 2 i 1 K i ≥ K 2 i {\huge \{}^{K_i≤K_{2i}} _{K_i≤K_{2i1}} …...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之ScrollBar组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之ScrollBar组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、ScrollBar组件 鸿蒙(HarmonyOS)滚动条组件ScrollBar&…...

读论文:DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

DiffBIR 发表于2023年的ICCV,是一种基于生成扩散先验的盲图像恢复模型。它通过两个阶段的处理来去除图像的退化,并细化图像的细节。DiffBIR 的优势在于提供高质量的图像恢复结果,并且具有灵活的参数设置,可以在保真度和质量之间进…...

基于微信小程序的新生报到系统的研究与实现,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

分享一下 uniapp 打包安卓apk

首先需要安装 Java 环境,这里就不做解释了 第二步:打开 mac 终端 / cmd 命令行工具 使用keytool -genkey命令生成证书 keytool -genkey -alias testalias -keyalg RSA -keysize 2048 -validity 36500 -keystore test.keystore *testalias 是证书别名&am…...

DevOps落地笔记-21|业务价值:软件发布的最终目的

上一课时介绍如何度量软件的内部质量和外部质量。在外部质量中,我们提到用户满意度是衡量软件外部质量的关键因素。“敏捷宣言”的第一条原则规定:“我们最重要的目标,是通过持续不断的及早交付有价值的软件使用户满意”。从这一点也可以看出…...

【动态规划】【前缀和】【数学】2338. 统计理想数组的数目

作者推荐 【动态规划】【前缀和】【C算法】LCP 57. 打地鼠 本文涉及知识点 动态规划汇总 C算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 LeetCode:2338. 统计理想数组的数目 给你两个整数 n 和 maxValue ,用于描述一个 理想…...

【已解决】onnx转换为rknn置信度大于1,图像出现乱框问题解决

前言 环境介绍: 1.编译环境 Ubuntu 18.04.5 LTS 2.RKNN版本 py3.8-rknn2-1.4.0 3.单板 迅为itop-3568开发板 一、现象 采用yolov5训练并将pt转换为onnx,再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1,并且图像乱框问题…...

多路服务器技术如何处理大量并发请求?

在当今的互联网时代,随着用户数量的爆炸性增长和业务规模的扩大,多路服务器技术已成为处理大量并发请求的关键手段。多路服务器技术是一种并行处理技术,它可以通过多个服务器同时处理来自不同用户的请求,从而显著提高系统的整体性…...

SpringBoot - 不加 @EnableCaching 标签也一样可以在 Redis 中存储缓存?

网上文章都是说需要在 Application 上加 EnableCaching 注解才能让缓存使用 Redis,但是测试发现不用 EnableCaching 也可以使用 Redis,是网上文章有问题吗? 现在 Application 上用了 EnableAsync,SpringBootApplication&#xff0…...

Linux------命令行参数

目录 前言 一、main函数的参数 二、命令行控制实现计算器 三、实现touch指令 前言 当我们在命令行输入 ls -al ,可以查看当前文件夹下所有文件的信息,还有其他的如rm,touch等指令,都可以帮我们完成相应的操作。 其实运行这些…...

LLM少样本示例的上下文学习在Text-to-SQL任务中的探索

导语 本文探索了如何通过各种提示设计策略,来增强大型语言模型(LLMs)在Few-shot In-context Learning中的文本到SQL转换能力。通过使用示例SQL查询的句法结构来检索演示示例,并选择同时追求多样性和相似性的示例可以提高性能&…...

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态,这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法,而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用,但 wait 强制和 s…...

使用SpringMVC实现功能

目录 一、计算器 1、前端页面 2、服务器处理请求 3、效果 二、用户登陆系统 1、前端页面 (1)登陆页面 (2)欢迎页面 2、前端页面发送请求--服务器处理请求 3、效果 三、留言板 1、前端页面 2、前端页面发送请求 &…...

spring aop实现接口超时处理组件

文章目录 实现思路实现代码starter组件 实现思路 这里使用FutureTask,它通过get方法以阻塞的方式获取执行结果,并设定超时时间: public V get() throws InterruptedException, ExecutionException ;public V get(long timeout, TimeUnit un…...

c++设计模式之装饰器模式

作用 为现有类增加功能 案例说明 class Car { public:virtual void show()0; };class Bmw:public Car { public:void show(){cout<<"宝马汽车>>"<<endl;} };class Audi:public Car { public:void show(){cout<<"奥迪汽车>>&q…...

WordPress如何实现随机显示一句话经典语录?怎么添加到评论框中?

我们在一些WordPress网站的顶部或侧边栏或评论框中&#xff0c;经常看到会随机显示一句经典语录&#xff0c;他们是怎么实现的呢&#xff1f; 其实&#xff0c;boke112百科前面跟大家分享的『WordPress集成一言&#xff08;Hitokoto&#xff09;API经典语句功能』一文中就提供…...

【退役之重学前端】vite, vue3, vue-router, vuex, ES6学习日记

学习使用vitevue3的所遇问题总结&#xff08;2024年2月1日&#xff09; 组件中使用<script>标签忘记加 setup 这会导致Navbar 没有暴露出来&#xff0c;导致使用不了&#xff0c;出现以下报错 这是因为&#xff0c;如果不用setup&#xff0c;就得使用 export default…...

[linux]-总线,设备,驱动,dts

1. 总线BUS 在物理层面上&#xff0c;代表不同的工作时序和电平特性&#xff1a; 总线代表着同类设备需要共同遵守的工作时序&#xff0c;不同的总线对于物理电平的要求是不一样的&#xff0c;对于每个比特的电平维持宽度也是不一样&#xff0c;而总线上传递的命令也会有自己…...

python3实现gitlab备份文件上传腾讯云COS

gitlab备份文件上传腾讯云COS 脚本说明脚本名称&#xff1a;upload.py 假设gitlab备份文件目录&#xff1a;/opt/gitlab/backups gitlab备份文件格式&#xff1a;1706922037_2024_02_06_14.2.1_gitlab_backup.tar1.脚本需和gitlab备份文件同级目录 2.根据备份文件中的日期判断…...

292.Nim游戏

桌子上有一堆石头。 轮流进行自己的回合&#xff0c; 你作为先手 。 每一回合&#xff0c;轮到的人拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。 假设你们每一步都是最优解。请编写一个函数&#xff0c;来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可…...

Spring和Spring Boot的区别

Spring 是一个轻量级的 Java 开发框架&#xff0c;它提供了一系列的模块和功能&#xff0c;例如 IoC&#xff08;控制反转&#xff09;、AOP&#xff08;面向方面编程&#xff09;、数据库访问、Web 开发等。Spring 的目标是使 Java 开发更加简单、高效和可维护。 Spring Boot …...

备战蓝桥杯---动态规划(理论基础)

目录 动态规划的概念&#xff1a; 解决多阶段决策过程最优化的一种方法 阶段&#xff1a; 状态&#xff1a; 决策&#xff1a; 策略&#xff1a; 状态转移方程&#xff1a; 适用的基本条件 1.具有相同的子问题 2.满足最优子结构 3.满足无后效性 动态规划的实现方式…...

FPGA_ip_pll

常使用插件管理器进行ip核的配置&#xff0c;ip核分为计算&#xff0c;存储&#xff0c;输入输出&#xff0c;视频图像处理&#xff0c;接口&#xff0c;调试等。 一 pll ip核简介 pll 即锁相环&#xff0c;可以对输入到fpga的时钟信号&#xff0c;进行分频&#xff0c;倍频&…...

【实验3】统计某电商网站买家收藏商品数量

文章目录 一、实验目的和要求∶二、实验任务∶三、实验准备方案,包括以下内容:实验内容一、实验环境二、实验内容与步骤(过程及数据记录):三、实验结果分析、思考题解答∶四、感想、体会、建议∶一、实验目的和要求∶ 现有某电商网站用户对商品的收藏数据,记录了用户收藏…...

【Qt】Android上运行keeps stopping, Desktop上正常

文章目录 问题 & 背景背景问题 解决方案One More ThingTake Away 问题 & 背景 背景 在文章【Qt】最详细教程&#xff0c;如何从零配置Qt Android安卓环境中&#xff0c;我们在Qt中配置了安卓开发环境&#xff0c;并且能够正常运行。 但笔者在成功配置并完成上述文章…...