当前位置: 首页 > news >正文

深入理解Redis哨兵原理

哨兵模式介绍

在深入理解Redis主从架构中Redis 的主从架构中,由于主从模式是读写分离的,如果主节点(master)挂了,那么将没有主节点来服务客户端的写操作请求,也没有主节点给从节点(slave)进行数据同步了。

在实际生产环境中,服务器难免会遇到一些突发状况:服务器宕机,停电,硬件损坏等等,一旦发生,后果不堪设想。 Redis 在 2.8 版本以后提供的哨兵(Sentinel)机制,它的作用是实现主从节点故障转移。它会监测主节点是否存活,如果发现主节点挂了,它就会选举一个从节点切换为主节点,并且把新主节点的相关信息通知给从节点和客户端。

图片

 

哨兵的能力包含如下几点:

  • 监控: 持续监控 master 、slave 是否健康,是否处于预期工作状态。

  • 主从动态切换: 当 Master 运行故障,哨兵启动自动故障恢复流程:从 slave 中选择一台作为新 master。

  • 通知机制: 竞选出新的master之后,通知客户端与新 master 建立连接;slave 从新的 master 中 replicaof,保障主从数据的一致性。

哨兵集群原理

监控能力

哨模式启用的时候,会启动Sentinel的进程。sentinel进程会向所有的master 和 slave 以及其他sentinel进程 发送心跳包(1s一次),看看是否正常返回响应。

  • 如果slave 没有在规定的时间内响应 sentinel 的 PING 命令 , sentinel 会认为该实例已经挂了,将它tag为:下线状态;

  • 同理,如果master 没有在规定时间响应 sentinel 的 PING 命令,也会被判定为 offline 状态,只是会多做一步 自动切换 master 的流程。

PING 命令的回复有两种情况:

  • 有效回复:返回 +PONG、-LOADING、-MASTERDOWN 任何一种;

  • 无效回复:有效回复之外的回复,或者指定时间内返回任何回复。

但是可能存在一些误判的情况,比如说网络拥塞、master实例假死、请求延迟,导致实例在某个短暂时间段不可用,后续又快速恢复了。
如果这时候被我们主动下线了,其实整个系统的可用性反而遭到了退化。而且 误判之后的一系列操作,master竞选、消息通知,slave 与新 master 同步数据,都会消耗大量资源。所以,误判要不得啊。
为了保证判断的可靠性,我们对下线的标识做了区分:一种是 主观下线,一种是客观下线。

  • 主观下线: 哨兵利用 PING 命令来监测 master、 slave 实例节点的状态。如果是无效回复,哨兵就把这个实例节点标记为 主观下线 。如果是slave,一般是有多从概念,直接下线即可,但如果是master,就需要小心了。需要多个sentinel进投票裁决。哨兵机制采用多个实例组成sentinel集群模式进行部署,即哨兵集群。多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。

  • 客观下线: master 是否要下线不是单个sentinel能够决定的,上面说了我们会有个sentinel集群,大家一起投票,超过一半的sentinel 都判断了主观下线,这时候我们就把 master 标记为 客观下线,认为它是真的不行了。
    当 master 被判定为 客观下线 后,就算正式没有master了,当务之急就是赶紧竞选出一个新的master。

  • 总结: 主观下线表示一个哨兵认为某个节点不可用,客观下线表示足够多的哨兵对某个节点的主观下线达成一致。只有在客观下线时,哨兵才会认定一个节点真正下线。

这里的「一定数量」是一个法定数量(Quorum),是由哨兵监控配置决定的,解释一下该配置:

# sentinel monitor <master-name> <master-host> <master-port> <quorum>
# 举例如下:
sentinel monitor mymaster 127.0.0.1 6379 2

这条配置项用于告知哨兵需要监听的主节点:

  • sentinel monitor:代表监控。

  • mymaster:代表主节点的名称,可以自定义。

  • 127.0.0.1:代表监控的主节点 ip,6379 代表端口。

  • 2:法定数量,代表只有两个或两个以上的哨兵认为主节点不可用的时候,才会把 master 设置为客观下线状态,然后进行 failover 操作。

客观下线 的标准就是,当有 N 个哨兵实例时,要有 N/2 + 1 个实例判断 master 为 主观下线 ,才能最终判定 master 为 客观下线 ,其实就是过半机制。

主从动态切换

master下线后,sentinel如何从多个slave中选举出一个新的master?这就需要通过 筛选 + 评估 方式进行选举了。

筛选
  • 过滤掉不健康的(下线或者断线),没有回复哨兵ping响应的从节点。

  • 过滤网路不好的节点:通过 down-after-milliseconds评估以往断连情况,如果一定周期内(如24h)从库和主库经常断连,而且超出了一定的阈值(如 10 次),则该slave不予考虑。

评估

筛选掉不健康的实例之后,我们就可以对于剩下健康的实例按顺序进行综合评估了。

  • slave 优先级,通过 slave-priority 配置项(redis.conf),可以给不同的从库设置不同优先级,优先级高的优先成为master。

  • 选择数据偏移量差距最小的,即slave_repl_offset与 master_repl_offset进度差距,其实就是比较 slave 与 原master 复制进度差距。

  • slave runID,在优先级和复制进度都相同的情况下,选用runID最小的,runID越小说明创建时间越早,优先选为master。先来后到原则。

等这几个条件都评估完,我们就会选择出最适合slave,把他推举为新的master。

信息通知

等推选出最新的master之后,后续所有的写操作都会进入这个master中。所以需要尽快通知到所有的slave,让他们重新 replacaof 到 master上,重新建立runID和slave_repl_offset ,来保证数据的正常传输和主从一致性。

信息通知主要通过** Redis 的发布者/订阅者机制来实现的。每个哨兵节点提供发布者/订阅者机制,客户端可以从哨兵订阅消息。主从切换完成后,哨兵就会向 +switch-master 频道发布新主节点的 IP 地址和端口的消息,这个时候客户端就可以收到这条信息,然后用这里面的新主节点的 IP 地址和端口进行通信了**。

总结

哨兵模式的核心还是主从模式的演变,只不过相对于主从模式在主节点宕机导致不可写的情况下,多了探活,以及竞选机制:从所有的从节点竞选出新的主节点,然后自动切换。Redis 哨兵模式通过监控、协调和通知机制,使得 Redis 集群能够在主节点故障时自动完成切换,提高了 Redis 的高可用性。

相关文章:

深入理解Redis哨兵原理

哨兵模式介绍 在深入理解Redis主从架构中Redis 的主从架构中&#xff0c;由于主从模式是读写分离的&#xff0c;如果主节点&#xff08;master&#xff09;挂了&#xff0c;那么将没有主节点来服务客户端的写操作请求&#xff0c;也没有主节点给从节点&#xff08;slave&#…...

MySQL-存储过程(PROCEDURE)

文章目录 1. 什么是存储过程&#xff1f;2. 存储过程的优点3. MySQL中的变量3.1 系统变量3.2 用户自定义变量3.3 局部变量 4. 存储过程的相关语法4.1 创建存储过程&#xff08;CREATE&#xff09;4.2 查看存储过程&#xff08;SHOW&#xff09;4.3 修改存储过程&#xff08;ALT…...

linux系统监控工具prometheus的安装以及监控mysql

prometheus 安装服务端客户端监控mysql prometheus浏览器查看 安装 https://prometheus.io/download/下载客户端和服务端以及需要监控的所有的包服务端 官网下载下载prometheustar -xf prometheus-2.47.2.linux-amd64.tar.gz -C /usr/local/ cd /usr/local/ mv prometheus-2.…...

初识tensorflow程序设计模式

文章目录 建立计算图tensorflow placeholdertensorflow数值运算常用的方法 tensorboard启动tensorboard的方法 建立一维与二维张量建立一维张量建立二维张量建立新的二维张量 矩阵的基本运算矩阵的加法矩阵乘法与加法 github地址https://github.com/fz861062923/TensorFlow 建…...

【QT+QGIS跨平台编译】之三十八:【GDAL+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、gdal介绍二、文件下载三、文件分析四、pro文件五、编译实践一、gdal介绍 GDAL(Geospatial Data Abstraction Library)是一个用于读取、写入和处理地理空间数据的开源库。它支持多种栅格和矢量地理空间数据格式,包括常见的GeoTIFF、Shapefile、NetCDF、HDF5等,…...

黑马鸿蒙教程学习1:Helloworld

今年打算粗略学习下鸿蒙开发&#xff0c;当作兴趣爱好&#xff0c;通过下华为那个鸿蒙开发认证&#xff0c; 发现黑马的课程不错&#xff0c;有视频和完整的代码和课件下载&#xff0c;装个devstudio就行了&#xff0c;建议32G内存。 今年的确是鸿蒙大爆发的一年呀&#xff0c;…...

蓝桥杯每日一题------背包问题(四)

前言 前面讲的都是背包的基础问题&#xff0c;这一节我们进行背包问题的实战&#xff0c;题目来源于一位朋友的询问&#xff0c;其实在这之前很少有题目是我自己独立做的&#xff0c;我一般习惯于先看题解&#xff0c;验证了题解提供的代码是正确的后&#xff0c;再去研究题解…...

OpenAI发布Sora技术报告深度解读!真的太强了!

&#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号&#xff1a;洲与AI。 &#x1f388; 本文专栏&#xff1a;本文收录…...

AJAX——接口文档

1 接口文档 接口文档&#xff1a;描述接口的文章 接口&#xff1a;使用AJAX和服务器通讯时&#xff0c;使用的URL&#xff0c;请求方法&#xff0c;以及参数 传送门&#xff1a;AJAX阶段接口文档 <!DOCTYPE html> <html lang"en"><head><meta c…...

leetcode hot100不同路径

本题可以采用动态规划来解决。还是按照五部曲来做 确定dp数组&#xff1a;dp[i][j]表示走到&#xff08;i&#xff0c;j&#xff09;有多少种路径 确定递推公式&#xff1a;我们这里&#xff0c;只有两个移动方向&#xff0c;比如说我移动到&#xff08;i&#xff0c;j&#x…...

【前端工程化面试题目】webpack 的热更新原理

可以在顺便学习一下 vite 的热更新原理&#xff0c;请参考这篇文章。 首先有几个知识点需要明确 热更新是针对开发过程中的开发服务器的&#xff0c;也就是 webpack-dev-serverwebpack 的热更新不需要额外的插件&#xff0c;但是需要在配置文件中 devServer属性中配置&#x…...

不花一分钱,在 Mac 上跑 Windows(M1/M2 版)

这是在 MacOS M1 上体验最新 Windows11 的效果&#xff1a; VMware Fusion&#xff0c;可以运行 Windows、Linux 系统&#xff0c;个人使用 licence 免费 安装流程见 &#x1f449; https://zhuanlan.zhihu.com/p/452412091 从申请 Fusion licence 到下载镜像&#xff0c;再到…...

Attempt to call an undefined function glutInit

Attempt to call an undefined function glutInit 解决方法&#xff1a; 从这里下载PyOpenGL 的whl安装文件&#xff0c; https://drive.google.com/drive/folders/1mz7faVsrp0e6IKCQh8MyZh-BcCqEGPwx 安装命令举栗 pip install PyOpenGL-3.1.7-cp39-cp39-win_amd64.whl pi…...

AB测试最小样本量

1.AB实验过程 常见的AB实验过程&#xff0c;分流-->实验-->数据分析-->决策&#xff1a;分流&#xff1a;用户被随机均匀的分为不同的组实验&#xff1a;同一组内的用户在实验期间使用相同的策略&#xff0c;不同组的用户使用相同或不同的策略。数据收集&#xff1a;…...

在Spring中事务失效的场景

在Spring框架中&#xff0c;事务管理是通过AOP&#xff08;面向切面编程&#xff09;实现的&#xff0c;主要依赖于Transactional注解。然而&#xff0c;在某些情况下&#xff0c;事务可能会失效。以下是一些可能导致Spring事务失效的常见场景&#xff1a; 非public方法&#…...

Rust 学习笔记 - 变量声明与使用

前言 任何一门编程语言几乎都脱离不了&#xff1a;变量、基本类型、函数、注释、循环、条件判断&#xff0c;这是一门编程语言的语法基础&#xff0c;只有当掌握这些基础语法及概念才能更好的学习 Rust。 变量介绍 Rust 是一种强类型语言&#xff0c;但在声明变量时&#xf…...

windows 下跑起大模型(llama)操作笔记

原贴地址&#xff1a;https://testerhome.com/topics/39091 前言 国内访问 chatgpt 太麻烦了&#xff0c;还是本地自己搭一个比较快&#xff0c;也方便后续修改微调啥的。 之前 llama 刚出来的时候在 mac 上试了下&#xff0c;也在 windows 上用 conda 折腾过&#xff0c;环…...

人工智能专题:基础设施行业智能化的基础设施,自智网络双价值分析

今天分享的是人工智能系列深度研究报告&#xff1a;《人工智能专题&#xff1a;基础设施行业智能化的基础设施&#xff0c;自智网络双价值分析》。 &#xff08;报告出品方&#xff1a;埃森哲&#xff09; 报告共计&#xff1a;32页 自智网络驱动的电信产业变革 经过多年的…...

docker 编译安装redis脚本

在Docker中编译安装Redis通常不是一个常见的做法&#xff0c;因为Redis官方提供了预编译的Docker镜像&#xff0c;这些镜像包含了已经编译好的Redis二进制文件。不过&#xff0c;如果你有特殊需求&#xff0c;想要自己从源代码编译Redis并打包成Docker镜像&#xff0c;你可以使…...

鸿蒙开发系列教程(二十三)--List 列表操作(2)

列表样式 1、设置内容间距 在列表项之间添加间距&#xff0c;可以使用space参数&#xff0c;主轴方向 List({ space: 10 }) { … } 2、添加分隔线 分隔线用来将界面元素隔开&#xff0c;使单个元素更加容易识别。 startMargin和endMargin属性分别用于设置分隔线距离列表侧…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...

stm32进入Infinite_Loop原因(因为有系统中断函数未自定义实现)

这是系统中断服务程序的默认处理汇编函数&#xff0c;如果我们没有定义实现某个中断函数&#xff0c;那么当stm32产生了该中断时&#xff0c;就会默认跑这里来了&#xff0c;所以我们打开了什么中断&#xff0c;一定要记得实现对应的系统中断函数&#xff0c;否则会进来一直循环…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...