当前位置: 首页 > news >正文

人工智能学习与实训笔记(二):神经网络之图像分类问题

人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客

目录

二、图像分类问题

2.1 尝试使用全连接神经网络

2.2 引入卷积神经网络

 2.3 分类函数Softmax

2.4 交叉熵损失函数

2.5 学习率优化算法

2.6 图像预处理算法

2.6.1 随机改变亮暗、对比度和颜色等

2.6.2 随机填充

2.6.3 随机裁剪

2.6.4 随机缩放

2.6.5 随机翻转

2.6.6 随机打乱真实框排列顺序


二、图像分类问题

图像分类问题是神经网络经常遇到的处理任务,需要将图像按给定的类别进行分类。

本篇通过手写数字识别这个典型的图像分类任务(0~9个数字一共是10个类别),来了解图像分类问题的特点,原理和方法。

我们首先尝试使用典型的全连接神经网络,再引入适合图像处理任务的卷积神经网络。

2.1 尝试使用全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示:

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

Python源码 - 激活函数为sigmoid的多层网络参考代码:

import paddle.nn.functional as F
from paddle.nn import Linear# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整self.fc1 = Linear(in_features=784, out_features=10)self.fc2 = Linear(in_features=10, out_features=10)# 定义一层全连接输出层,输出维度是1self.fc3 = Linear(in_features=10, out_features=1)# 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数def forward(self, inputs):# inputs = paddle.reshape(inputs, [inputs.shape[0], 784])outputs1 = self.fc1(inputs)outputs1 = F.sigmoid(outputs1)outputs2 = self.fc2(outputs1)outputs2 = F.sigmoid(outputs2)outputs_final = self.fc3(outputs2)return outputs_final

然而,全连接神经网络模型并不适合图像分类模型,图像分类任务需要考虑图像数据的空间性,以及如何分类(波士顿房价预测是回归任务,是回归到一个具体数字,手写数字识别实际上是进行分类判断),对于图像识别和分类任务,我们需要引入卷积神经网络,Softmax激活函数以及交叉熵损失函数,整个流程如下图:

2.2 引入卷积神经网络

图像识别需要考虑数据的空间分布,更适合使用卷积神经网络模型,模型中包含卷积层(convolution)和池化层(subsampling),以及最后一个全连接层(fully connected)

关于卷积神经网络,可以参考这一篇:

PyTorch学习系列教程:卷积神经网络【CNN】 - 知乎

关于卷积核和输入,输出通道,可以参考这一篇:

如何理解卷积神经网络中的通道(channel)_卷积通道数_叹久01的博客-CSDN博客

​​

Python源码 - 卷积神经网络参考代码:

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是1self.fc = Linear(in_features=980, out_features=1)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层不使用激活函数def forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

 2.3 分类函数Softmax

 为了进行分类判别,要通过引入Softmax函数到输出层,使得输出层的输出为不同类别概率的集合,并且所有概率之和为1,比如[0.1, 0.2, 0.7]

​​

比如,一个三个标签的分类模型(三分类)使用的Softmax输出层,从中可见原始输出的三个数字3、1、-3,经过Softmax层后转变成加和为1的三个概率值0.88、0.12、0。

​​

2.4 交叉熵损失函数

分类网络模型需要使用交叉熵损失函数不断训练更新模型参数,最终使得交叉熵趋于收敛,从而完成模型训练。

正确解标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果正确解标签对应的输出越小,则交叉熵的值越大。 

​​

要想搞清楚交叉熵,推荐大家读一下这篇文章:损失函数:交叉熵详解 - 知乎

里面又牵涉到极大似然估计理论,推荐阅读这篇文章:极大似然估计思想的最简单解释_class_brick的博客-CSDN博客

2.5 学习率优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 所示。

图3: 不同学习率算法效果示意图

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。
  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。
  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。
  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

2.6 图像预处理算法

在计算机视觉中,通常会对图像做一些随机的变化,产生相似但又不完全相同的样本。主要作用是扩大训练数据集,抑制过拟合,提升模型的泛化能力,常用的方法主要有以下几种:

  • 随机改变亮暗、对比度和颜色
  • 随机填充
  • 随机裁剪
  • 随机缩放
  • 随机翻转
  • 随机打乱真实框排列顺序

下面是分别使用numpy 实现这些数据增强方法。

2.6.1 随机改变亮暗、对比度和颜色等

import numpy as np
import cv2
from PIL import Image, ImageEnhance
import random# 随机改变亮暗、对比度和颜色等
def random_distort(img):# 随机改变亮度def random_brightness(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Brightness(img).enhance(e)# 随机改变对比度def random_contrast(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Contrast(img).enhance(e)# 随机改变颜色def random_color(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Color(img).enhance(e)ops = [random_brightness, random_contrast, random_color]np.random.shuffle(ops)img = Image.fromarray(img)img = ops[0](img)img = ops[1](img)img = ops[2](img)img = np.asarray(img)return img# 定义可视化函数,用于对比原图和图像增强的效果
import matplotlib.pyplot as plt
def visualize(srcimg, img_enhance):# 图像可视化plt.figure(num=2, figsize=(6,12))plt.subplot(1,2,1)plt.title('Src Image', color='#0000FF')plt.axis('off') # 不显示坐标轴plt.imshow(srcimg) # 显示原图片# 对原图做 随机改变亮暗、对比度和颜色等 数据增强srcimg_gtbox = records[0]['gt_bbox']srcimg_label = records[0]['gt_class']plt.subplot(1,2,2)plt.title('Enhance Image', color='#0000FF')plt.axis('off') # 不显示坐标轴plt.imshow(img_enhance)image_path = records[0]['im_file']
print("read image from file {}".format(image_path))
srcimg = Image.open(image_path)
# 将PIL读取的图像转换成array类型
srcimg = np.array(srcimg)# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance = random_distort(srcimg)
visualize(srcimg, img_enhance)

2.6.2 随机填充

# 随机填充
def random_expand(img,gtboxes,max_ratio=4.,fill=None,keep_ratio=True,thresh=0.5):if random.random() > thresh:return img, gtboxesif max_ratio < 1.0:return img, gtboxesh, w, c = img.shaperatio_x = random.uniform(1, max_ratio)if keep_ratio:ratio_y = ratio_xelse:ratio_y = random.uniform(1, max_ratio)oh = int(h * ratio_y)ow = int(w * ratio_x)off_x = random.randint(0, ow - w)off_y = random.randint(0, oh - h)out_img = np.zeros((oh, ow, c))if fill and len(fill) == c:for i in range(c):out_img[:, :, i] = fill[i] * 255.0out_img[off_y:off_y + h, off_x:off_x + w, :] = imggtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)gtboxes[:, 2] = gtboxes[:, 2] / ratio_xgtboxes[:, 3] = gtboxes[:, 3] / ratio_yreturn out_img.astype('uint8'), gtboxes# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
img_enhance, new_gtbox = random_expand(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.3 随机裁剪

随机裁剪之前需要先定义两个函数,multi_box_iou_xywhbox_crop这两个函数将被保存在box_utils.py文件中。

import numpy as npdef multi_box_iou_xywh(box1, box2):"""In this case, box1 or box2 can contain multi boxes.Only two cases can be processed in this method:1, box1 and box2 have the same shape, box1.shape == box2.shape2, either box1 or box2 contains only one box, len(box1) == 1 or len(box2) == 1If the shape of box1 and box2 does not match, and both of them contain multi boxes, it will be wrong."""assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2inter_x1 = np.maximum(b1_x1, b2_x1)inter_x2 = np.minimum(b1_x2, b2_x2)inter_y1 = np.maximum(b1_y1, b2_y1)inter_y2 = np.minimum(b1_y2, b2_y2)inter_w = inter_x2 - inter_x1inter_h = inter_y2 - inter_y1inter_w = np.clip(inter_w, a_min=0., a_max=None)inter_h = np.clip(inter_h, a_min=0., a_max=None)inter_area = inter_w * inter_hb1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)return inter_area / (b1_area + b2_area - inter_area)def box_crop(boxes, labels, crop, img_shape):x, y, w, h = map(float, crop)im_w, im_h = map(float, img_shape)boxes = boxes.copy()boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (boxes[:, 0] + boxes[:, 2] / 2) * im_wboxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (boxes[:, 1] + boxes[:, 3] / 2) * im_hcrop_box = np.array([x, y, x + w, y + h])centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(axis=1)boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])boxes[:, :2] -= crop_box[:2]boxes[:, 2:] -= crop_box[:2]mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)labels = labels * mask.astype('float32')boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (boxes[:, 2] - boxes[:, 0]) / wboxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (boxes[:, 3] - boxes[:, 1]) / hreturn boxes, labels, mask.sum()# 随机裁剪
def random_crop(img,boxes,labels,scales=[0.3, 1.0],max_ratio=2.0,constraints=None,max_trial=50):if len(boxes) == 0:return img, boxesif not constraints:constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),(0.9, 1.0), (0.0, 1.0)]img = Image.fromarray(img)w, h = img.sizecrops = [(0, 0, w, h)]for min_iou, max_iou in constraints:for _ in range(max_trial):scale = random.uniform(scales[0], scales[1])aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \min(max_ratio, 1 / scale / scale))crop_h = int(h * scale / np.sqrt(aspect_ratio))crop_w = int(w * scale * np.sqrt(aspect_ratio))crop_x = random.randrange(w - crop_w)crop_y = random.randrange(h - crop_h)crop_box = np.array([[(crop_x + crop_w / 2.0) / w,(crop_y + crop_h / 2.0) / h,crop_w / float(w), crop_h / float(h)]])iou = multi_box_iou_xywh(crop_box, boxes)if min_iou <= iou.min() and max_iou >= iou.max():crops.append((crop_x, crop_y, crop_w, crop_h))breakwhile crops:crop = crops.pop(np.random.randint(0, len(crops)))crop_boxes, crop_labels, box_num = box_crop(boxes, labels, crop, (w, h))if box_num < 1:continueimg = img.crop((crop[0], crop[1], crop[0] + crop[2],crop[1] + crop[3])).resize(img.size, Image.LANCZOS)img = np.asarray(img)return img, crop_boxes, crop_labelsimg = np.asarray(img)return img, boxes, labels# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
srcimg_label = records[0]['gt_class']img_enhance, new_labels, mask = random_crop(srcimg, srcimg_gtbox, srcimg_label)
visualize(srcimg, img_enhance)

2.6.4 随机缩放

# 随机缩放
def random_interp(img, size, interp=None):interp_method = [cv2.INTER_NEAREST,cv2.INTER_LINEAR,cv2.INTER_AREA,cv2.INTER_CUBIC,cv2.INTER_LANCZOS4,]if not interp or interp not in interp_method:interp = interp_method[random.randint(0, len(interp_method) - 1)]h, w, _ = img.shapeim_scale_x = size / float(w)im_scale_y = size / float(h)img = cv2.resize(img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)return img# 对原图做 随机缩放
img_enhance = random_interp(srcimg, 640)
visualize(srcimg, img_enhance)

2.6.5 随机翻转

# 随机翻转
def random_flip(img, gtboxes, thresh=0.5):if random.random() > thresh:img = img[:, ::-1, :]gtboxes[:, 0] = 1.0 - gtboxes[:, 0]return img, gtboxes# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance, box_enhance = random_flip(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.6 随机打乱真实框排列顺序

# 随机打乱真实框排列顺序
def shuffle_gtbox(gtbox, gtlabel):gt = np.concatenate([gtbox, gtlabel[:, np.newaxis]], axis=1)idx = np.arange(gt.shape[0])np.random.shuffle(idx)gt = gt[idx, :]return gt[:, :4], gt[:, 4]

相关文章:

人工智能学习与实训笔记(二):神经网络之图像分类问题

人工智能专栏文章汇总&#xff1a;人工智能学习专栏文章汇总-CSDN博客 目录 二、图像分类问题 2.1 尝试使用全连接神经网络 2.2 引入卷积神经网络 2.3 分类函数Softmax 2.4 交叉熵损失函数 2.5 学习率优化算法 2.6 图像预处理算法 2.6.1 随机改变亮暗、对比度和颜色等 …...

SSM框架,spring-aop的学习

代理模式 二十三种设计模式中的一种&#xff0c;属于结构型模式。它的作用就是通过提供一个代理类&#xff0c;让我们在调用目标方法的时候&#xff0c;不再是直接对目标方法进行调用&#xff0c;而是通过代理类间接调用。让不属于目标方法核心逻辑的代码从目标方法中剥离出来…...

【设计模式】4、策略模式

文章目录 一、问题二、解决方案2.1 真实世界的类比2.2 策略模式结构2.3 适用场景2.4 实现方式2.5 优缺点2.6 与其他模式的关系 三、示例代码3.1 go3.2 rust 策略模式是一种行为设计模式&#xff0c;它能定义一系列算法&#xff0c;把每种算法分别放入独立的类中&#xff0c;以是…...

【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(深入)

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;世界上的另一个我 1:02━━━━━━️&#x1f49f;──────── 3:58 &#x1f504; ◀️ ⏸ ▶️ ☰ &am…...

【机构vip教程】Android SDK手机测试环境搭建

Android SDK 的安装和环境变量的配置 前置条件&#xff1a;需已安装 jdk1.8及 以上版本 1、下载Android SDK&#xff0c;解压后即可&#xff08;全英文路径&#xff09;&#xff1b;下载地址&#xff1a;http://tools.android-studio.org/index.php/sdk 2、新建一个环境变量&…...

2024.2.18

使用fgets统计给定文件的行数 #include<stdio.h> #include<string.h> int main(int argc, const char *argv[]) {FILE *fpNULL;if((fpfopen("./test.txt","w"))NULL){perror("open err");return -1;}fputc(h,fp);fputc(\n,fp);fput…...

Haproxy实验

环境: servera(Haproxy):192.168.233.132 serverb(web1):192.168.233.144 serverc(web2):192.168.233.140 serverd(客户端):192.168.233.141 servera(Haproxy): yum install haproxy -y vim /etc/haproxy/haproxy.cfg(配置文件) # 设置日志&#…...

CSRNET图像修复,DNN

CSRNET图像修复 CSRNET图像修复&#xff0c;只需要OPENCV的DNN...

004 - Hugo, 分类

004 - Hugo, 分类content文件夹 004 - Hugo, 分类 content文件夹 ├─.obsidian ├─categories │ ├─Python │ └─Test ├─page │ ├─about │ ├─archives │ ├─links │ └─search └─post├─chinese-test├─emoji-support├─Git教程├─Hugo分类├─…...

Vue3之ElementPlus中Table选中数据的获取与清空方法

Vue3之ElementPlus中Table选中数据的获取与清空方法 文章目录 Vue3之ElementPlus中Table选中数据的获取与清空方法1. 点击按钮获取与清空选中表格的数据1. 用到ElementPlus中Table的两个方法2. 业务场景3. 操作案例 1. 点击按钮获取与清空选中表格的数据 1. 用到ElementPlus中…...

Leetcode 516.最长回文子序列

题意理解&#xff1a; 给你一个字符串 s &#xff0c;找出其中最长的回文子序列&#xff0c;并返回该序列的长度。 子序列定义为&#xff1a;不改变剩余字符顺序的情况下&#xff0c;删除某些字符或者不删除任何字符形成的一个序列。 回文理解为元素对称的字串&#xff0c;这里…...

cool Node后端 中实现中间件的书写

1.需求 在node后端中&#xff0c;想实现一个专门鉴权的文件配置&#xff0c;可以这样来解释 就是 有些接口需要token调用接口&#xff0c;有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理&#xf…...

Leecode之面试题消失的数字

一.题目及剖析 https://leetcode.cn/problems/missing-number-lcci/description/ 数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗&#xff1f; 注意&#xff1a;本题相对书上原题稍作改动 示例 1&…...

STM32的三种下载方式

结果jlink&#xff0c;串口&#xff0c;stlink方式都没有问题&#xff0c;是当时缩减代码&#xff0c;看真正起作用的代码段有哪些&#xff0c;就把GPIO初始化中 /*开启GPIO外部时钟*/RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA, ENABLE); 把开启外部时钟的代码注释掉了。…...

华为 huawei 交换机 接口 MAC 地址学习限制接入用户数量 配置示例

目录 组网需求: 配置思路&#xff1a; 操作步骤&#xff1a; 配置文件&#xff1a; 组网需求: 如 图 2-14 所示&#xff0c;用户网络 1 和用户网络 2 通过 LSW 与 Switch 相连&#xff0c; Switch 连接 LSW 的接口为GE0/0/1 。用户网络 1 和用户网络 2 分别属于 VLAN10 和 V…...

使用Python生成二维码的完整指南

无边落木萧萧下&#xff0c;不如跟着可莉一起游~ 可莉将这篇博客收录在了&#xff1a;《Python》 可莉推荐的优质博主首页&#xff1a;Kevin ’ s blog 本文将介绍如何使用Python中的qrcode库来生成二维码。通过简单的代码示例和详细解释&#xff0c;读者将学习如何在Python中轻…...

排序前言冒泡排序

目录 排序应用 常见的排序算法 BubbleSort冒泡排序 整体思路 图解分析 ​ 代码实现 每趟 写法1 写法2 代码NO1 代码NO2优化 时间复杂度 排序概念 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递…...

红队笔记Day3-->隧道上线不出网机器

昨天讲了通过代理的形式&#xff08;端口转发&#xff09;实现了上线不出网的机器&#xff0c;那么今天就来讲一下如何通过隧道上线不出网机器 目录 1.网络拓扑 2.开始做隧道&#xff1f;No&#xff01;&#xff01;&#xff01; 3.icmp隧道 4.HTTP隧道 5.SSH隧道 1.什么…...

C 练习实例70-求字符串长度

题目&#xff1a;写一个函数&#xff0c;求一个字符串的长度&#xff0c;在 main 函数中输入字符串&#xff0c;并输出其长度。 解答&#xff1a; #include <stdio.h> int length(char *s); int main() {int len;char str[20];printf("请输入字符串:\n");scan…...

HarmonyOS—@State装饰器:组件内状态

State装饰的变量&#xff0c;或称为状态变量&#xff0c;一旦变量拥有了状态属性&#xff0c;就和自定义组件的渲染绑定起来。当状态改变时&#xff0c;UI会发生对应的渲染改变。 在状态变量相关装饰器中&#xff0c;State是最基础的&#xff0c;使变量拥有状态属性的装饰器&a…...

Linux系统——防火墙拓展及重点理解

目录 一、iptables 1.基本语法 2.四表五链——重点记忆 2.1四表 2.2五链 2.3总结 3.iptables选项示例 3.1 -Z 清空流量计数 3.2 -P 修改默认规则 3.3 -D 删除规则 3.4 -R 指定编号替换规则 5.白名单 6.通用匹配 7.示例 7.1添加回环网卡 7.2可以访问端口 7.3 主…...

阿里云短信验证码的两个坑

其它都参照官网即可&#xff0c;其中有两个坑需要注意&#xff1a; 1、除去官网pom引用的包之外&#xff0c;还需要引用以下包&#xff1a; <dependency><groupId>org.apache.httpcomponents.client5</groupId><artifactId>httpclient5</artifact…...

c入门第十五篇——学而时习之(阶段性总结)

古人说&#xff1a;“学而时习之。”古人又说&#xff1a;“温故而知新。”古人还说&#xff1a;“读书百遍&#xff0c;其义自见。” 总结一个道理那就是好书要反反复复的读&#xff0c;学习过的知识要时常去复习它&#xff0c;才有可能常读常新。 我&#xff1a;“师弟&…...

抽象的前端

问题背景&#xff1a;vue3&#xff0c;axios 直接导致问题&#xff1a;路由渲染失败 问题报错&#xff1a;Uncaught SyntaxError: The requested module /node_modules/.vite/deps/axios.js?v7bee3286 does not provide an export named post (at LoginIn.vue:16:9) 引入组…...

UPC训练赛二十/20240217

A:无穷力量 题目描述 2022年重庆突发山火让世界看到了中国一个又一个的感人事迹&#xff1a;战士们第一时间奔赴火场&#xff0c;志愿者们自发组成团队&#xff0c;为救火提供一切的可能的服务&#xff0c;人们自发输送物资&#xff0c;有的志愿者甚至几天几夜没有睡觉。每个…...

【51单片机】LCD1602(江科大)

1.LCD1602介绍 LCD1602(Liquid Crystal Display)液晶显示屏是一种字符型液晶显示模块,可以显示ASCII码的标准字符和其它的一些内置特殊字符,还可以有8个自定义字符 显示容量:162个字符,每个字符为5*7点阵 2.引脚及应用电路 3.内部结构框图 屏幕: 字模库:类似于数码管的数…...

conda与pip的常用命令

conda的常用命令 1.查看conda版本 $ conda --version conda 23.11.02.查看conda的配置信息 $ conda infoactive environment : baseactive env location : /home/myPc/miniconda3shell level : 1user config file : /home/myPc/.condarcpopulated config files : conda vers…...

你知道什么是物联网MQTT么?

目录 你知道什么是物联网MQTT么&#xff1f;MQTT的基本概念MQTT的工作原理MQTT的应用场景MQTT的实例案例智能家居场景工业监控场景 你知道什么是物联网MQTT么&#xff1f; MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级的、基于发布/订阅模式…...

P8 pair vector

pair是一个模板类&#xff0c;用于表示一对值的组合&#xff0c;用<utility>中 pair模板有两个模板参数&#xff0c;t1 t2&#xff0c;分别表示第一个值和第二个值类型 pair类有两个成员变量&#xff0c;frist和 cond,分别表示第一个值与第二个值 还有一些成员函数和…...

奇异值分解(SVD)的应用——图像压缩

SVD方法是模型降阶的一类重要方法&#xff0c;本征正交分解&#xff08;POD&#xff09;和平衡截断&#xff08;BT&#xff09;都属于SVD类方法。 要想深入了解模型降阶技术&#xff0c;我们可以先从SVD的应用入手&#xff0c;做一个直观的了解。 1. SVD的定义和分类 我们想寻找…...

RTDETR改进系列指南

基于Ultralytics的RT-DETR改进项目.(89.9) 为了感谢各位对RTDETR项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程 自带的一些文件说明 train.py 训练模型的脚本main_profile.py 输出模型和模型每一层的参数,计算量的脚本(rtdetr-l和rtdetr-x因为thop库的问…...

类和结构体的区别

类&#xff08;class&#xff09;和结构体&#xff08;struct&#xff09;是面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;中常见的两种数据类型&#xff0c;它们在不同的编程语言中有一些共同之处&#xff0c;但也存在一些区别。以下是它们…...

利用Excel模拟投币试验

文章目录 试验前对Excel要进行的设置试验步骤计算正面频率结果图试验前对Excel要进行的设置 进入Excel依次点击如下选项,最后将分析工具库勾选 #mermaid-svg-bIvrxZGI9buCMW6U {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#m…...

WebService接口测试

WebService的理解 WebService就是Web服务的意思&#xff0c;对应的应用层协议为SOAP&#xff08;相当于HTTP协议&#xff09;&#xff0c;可理解为远程调用技术。 特点&#xff1a; 客户端发送的请求主体内容&#xff08;请求报文&#xff09;的格式为XML格式 接口返回的响…...

语音唤醒——

文章目录 配置主代码 参考文档&#xff1a;https://picovoice.ai/docs/quick-start/porcupine-python/ 配置 pip install pvporcupine主代码 ACCESS_KEY&#xff1a;需要将该参数填入即可 # # Copyright 2018-2023 Picovoice Inc. # # You may not use this file except in …...

typeScript 类型推论

什么是类型推论&#xff1f; 类型推论是 TypeScript 中的一个特性&#xff0c;它允许开发人员不必显式地指定变量的类型。相反&#xff0c;开发人员可以根据变量的使用情况让 TypeScript 编译器自动推断出类型。例如&#xff0c;如果开发人员将一个字符串赋值给一个变量&#…...

JavaScript 设计模式之代理模式

代理模式 其实这种模式在现在很多地方也都有使用到&#xff0c;如 Vue3 中的数据相应原理就是使用的 es6 中的 Proxy 代理及 Reflect 反射的方式来处理数据响应式 我们日常在使用数据请求时&#xff0c;也会用到一些代理的方式&#xff0c;比如在请求不同的域名&#xff0c;端…...

JavaScript 对象判断

如何判断一个对象是否是Set、Map、Array、Object 参考链接&#xff1a; https://blog.csdn.net/yunchong_zhao/article/details/115915624 let set new Set() let map new Map() let arr [] let obj {}console.log(Object.prototype.toString.call(obj)); // [object Obje…...

Android下SF合成流程重学习之onMessageInvalidate

Android下SF合成流程重学习之onMessageInvalidate 引言 虽然看了很多关于Android Graphics图形栈的文章和博客&#xff0c;但是都没有形成自己的知识点。每次学习了&#xff0c;仅仅是学习了而已&#xff0c;没有形成自己的知识体系&#xff0c;这次趁着有时间&#xff0c;这次…...

基于SpringBoot+WebSocket+Spring Task的前后端分离外卖项目-订单管理(十七)

订单管理 1. Spring Task1.1 介绍1.2 cron表达式1.3 入门案例1.3.1 Spring Task使用步骤1.3.2 代码开发1.3.3 功能测试 2.订单状态定时处理2.1 需求分析2.2 代码开发2.3 功能测试 3. WebSocket3.1 介绍3.2 入门案例3.2.1 案例分析3.2.2 代码开发3.2.3 功能测试 4. 来单提醒4.1 …...

【Java多线程进阶】JUC常见类以及CAS机制

1. Callable的用法 之前已经接触过了Runnable接口&#xff0c;即我们可以使用实现Runnable接口的方式创建一个线程&#xff0c;而Callable也是一个interface&#xff0c;我们也可以用Callable来创建一个线程。 Callable是一个带有泛型的interface实现Callable接口必须重写cal…...

Python算法100例-1.7 最佳存款方案

完整源代码项目地址&#xff0c;关注博主私信’源代码’后可获取 1.问题描述2.问题分析3.算法设计4.完整的程序 1&#xff0e;问题描述 假设银行一年整存零取的月息为0.63%。现在某人手中有一笔钱&#xff0c;他打算在今后5年中的每年年底取出1000元&#xff0c;到第5年时刚…...

ADO世界之FIRST

目录 一、ADO 简介 二、ADO 数据库连接 1.创建一个 DSN-less 数据库连接 2.创建一个 ODBC 数据库连接 3.到 MS Access 数据库的 ODBC 连接 4.ADO 连接对象&#xff08;ADO Connection Object&#xff09; 三、ADO Recordset&#xff08;记录集&#xff09; 1.创建一个 …...

【COMP337 LEC 5-6】

LEC 5 Perceptron &#xff1a; Binary Classification Algorithm 8 感应器是 单个神经元的模型 突触连接的强度取决于接受外部刺激的反应 X input W weights a x1*w1x2*w2....... > / < threshold Bias MaxIter is a hyperparameter 超参数 which has to be chosen…...

力扣72. 编辑距离(动态规划)

Problem: 72. 编辑距离 文章目录 题目描述思路复杂度Code 题目描述 思路 由于易得将字符串word1向word2转换和word2向word1转换是等效的&#xff0c;则我们假定统一为word1向word2转换&#xff01;&#xff01;&#xff01; 1.确定状态&#xff1a;我们假设现在有下标i&#x…...

linux tree命令找不到:如何使用Linux Tree命令查看文件系统结构

Linux tree命令是一个用于显示文件夹和文件的结构的工具&#xff0c;它可以帮助用户更好地理解文件系统的结构。如果你在linux系统上找不到tree命令&#xff0c;那么可能是因为你的系统中没有安装tree命令。 解决方案 Linux tree命令是一个用于显示文件夹和文件的结构的工具&…...

OJ_最大逆序差

题目 给定一个数组&#xff0c;编写一个算法找出这个数组中最大的逆序差。逆序差就是i<j时&#xff0c;a[j]-a[i]的值 c语言实现 #include <stdio.h> #include <limits.h> // 包含INT_MIN定义 int maxReverseDifference(int arr[], int size) { if (size…...

MyBatis-Plus 实体类里写正则让字段phone限制为手机格式

/* Copyright © 2021User:啾啾修车File:ToupiaoRecord.javaDate:2021/01/12 19:29:12 */ package com.jjsos.repair.toupiao.entity; import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.mybatisplus.annotation.TableField; import com.baomido…...

K8S之运用污点、容忍度设置Pod的调度约束

污点、容忍度 污点容忍度 taints 是键值数据&#xff0c;用在节点上&#xff0c;定义污点&#xff1b; tolerations 是键值数据&#xff0c;用在pod上&#xff0c;定义容忍度&#xff0c;能容忍哪些污点。 污点 污点是定义在k8s集群的节点上的键值属性数据&#xff0c;可以决…...

Sora爆火,普通人的10个赚钱机会

您好&#xff0c;我是码农飞哥&#xff08;wei158556&#xff09;&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。&#x1f4aa;&#x1f3fb; 1. Python基础专栏&#xff0c;基础知识一网打尽&#xff0c;9.9元买不了吃亏&#xff0c;买不了上当。 Python从入门到精通…...