当前位置: 首页 > news >正文

第N3周:Pytorch文本分类入门

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rbOOmire8OocQ90QM78DRA) 中的学习记录博客** >- **🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
import  torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")
#win10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")from torchtext.datasets import AG_NEWS
train_iter = AG_NEWS(split='train')#加载 AG News 数据集from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator#返回分词器
tokenizer = get_tokenizer('basic_english')def yield_tokens(data_iter):for _, text in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])#设置默认索引
print(vocab(['here', 'is', 'an', 'example']))text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1
print(text_pipeline('here is an example '))
print(label_pipeline('10'))from torch.utils.data import DataLoaderdef collate_batch(batch):label_list,text_list,offsets =[],[],[0]for(_label,_text)in batch:#标签列表label_list.append(label_pipeline(_label))#文本列表processed_text =torch.tensor(text_pipeline(_text),dtype=torch.int64)text_list.append(processed_text)#偏移量,即语句的总词汇量offsets.append(processed_text.size(0))label_list =torch.tensor(label_list,dtype=torch.int64)text_list=torch.cat(text_list)offsets=torch.tensor(offsets[:-1]).cumsum(dim=0)#返回维度dim中输入元素的累计和return label_list.to(device),text_list.to(device),offsets.to(device)
#数据加载器
dataloader =DataLoader(train_iter,batch_size=8,shuffle   =False,collate_fn=collate_batch)from torch import nn
class TextClassificationModel(nn.Module):def __init__(self,vocab_size,embed_dim,num_class):super(TextClassificationModel,self).__init__()self.embedding =nn.EmbeddingBag(vocab_size,#词典大小embed_dim,#嵌入的维度sparse=False)#self.fc =nn.Linear(embed_dim,num_class)self.init_weights()def init_weights(self):initrange =0.5self.embedding.weight.data.uniform_(-initrange,initrange)self.fc.weight.data.uniform_(-initrange,initrange)self.fc.bias.data.zero_()def forward(self,text,offsets):embedded =self.embedding(text,offsets)return self.fc(embedded)num_class = len(set([label for(label,text)in train_iter]))
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size,em_size,num_class).to(device)import time
def train(dataloader):model.train()  #切换为训练模式total_acc,train_loss,total_count =0,0,0log_interval =500start_time   =time.time()for idx,(label,text,offsets) in enumerate(dataloader):predicted_label =model(text,offsets)optimizer.zero_grad()#grad属性归零loss =criterion(predicted_label,label)#计算网络输出和真实值之间的差距,labe1为真实值loss.backward()#反向传播optimizer.step()  #每一步自动更新#记录acc与losstotal_acc   +=(predicted_label.argmax(1)==label).sum().item()train_loss  +=loss.item()total_count +=label.size(0)if idx %log_interval ==0 and idx >0:elapsed =time.time()-start_timeprint('|epoch {:1d}|{:4d}/{:4d}batches''|train_acc {:4.3f}train_loss {:4.5f}'.format(epoch,idx,len(dataloader),total_acc/total_count,train_loss/total_count))total_acc,train_loss,total_count =0,0,0start_time =time.time()def evaluate(dataloader):model.eval()  #切换为测试模式total_acc,train_loss,total_count =0,0,0with torch.no_grad():for idx,(label,text,offsets)in enumerate(dataloader):predicted_label =model(text,offsets)loss = criterion(predicted_label,label)  #计算loss值#记录测试数据total_acc   +=(predicted_label.argmax(1)==label).sum().item()train_loss  +=loss.item()total_count +=label.size(0)return total_acc/total_count,train_loss/total_countfrom torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
#超参数
EPOCHS=10 #epoch
LR=5  #学习率
BATCH_SIZE=64 #batch size for training
criterion =torch.nn.CrossEntropyLoss()
optimizer =torch.optim.SGD(model.parameters(),lr=LR)
scheduler =torch.optim.lr_scheduler.StepLR(optimizer,1.0,gamma=0.1)
total_accu =Nonetrain_iter,test_iter =AG_NEWS()#加载数据
train_dataset =to_map_style_dataset(train_iter)
test_dataset =to_map_style_dataset(test_iter)
num_train=int(len(train_dataset)*0.95)split_train_,split_valid_=random_split(train_dataset,[num_train,len(train_dataset)-num_train])
train_dataloader =DataLoader(split_train_,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
valid_dataloader =DataLoader(split_valid_,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
test_dataloader=DataLoader(test_dataset,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)for epoch in range(1,EPOCHS +1):epoch_start_time =time.time()train(train_dataloader)val_acc,val_loss =evaluate(valid_dataloader)if total_accu is not None and total_accu >val_acc:scheduler.step()else:total_accu =val_accprint('-'*69)print('|epoch {:1d}|time:{:4.2f}s|''valid_acc {:4.3f}valid_loss {:4.3f}'.format(epoch,time.time()-epoch_start_time,val_acc,val_loss))print('-'*69)print('Checking the results of test dataset.')
test_acc,test_loss =evaluate(test_dataloader)
print('test accuracy {:8.3f}'.format(test_acc))

文本构建向量的基本原理:

下面是运行结果:

D:\Code\pythonProject_PyTorch\venv\Scripts\python.exe D:\Code\pythonProject_PyTorch\PytorchText.py 
[475, 21, 30, 5297]
[475, 21, 30, 5297]
9
|epoch 1| 500/1782batches|train_acc 0.721train_loss 0.01110
|epoch 1|1000/1782batches|train_acc 0.871train_loss 0.00606
|epoch 1|1500/1782batches|train_acc 0.877train_loss 0.00562
---------------------------------------------------------------------
|epoch 1|time:11.86s|valid_acc 0.782valid_loss 0.009
---------------------------------------------------------------------
|epoch 2| 500/1782batches|train_acc 0.903train_loss 0.00451
|epoch 2|1000/1782batches|train_acc 0.906train_loss 0.00442
|epoch 2|1500/1782batches|train_acc 0.906train_loss 0.00436
---------------------------------------------------------------------
|epoch 2|time:11.64s|valid_acc 0.845valid_loss 0.007
---------------------------------------------------------------------
|epoch 3| 500/1782batches|train_acc 0.919train_loss 0.00374
|epoch 3|1000/1782batches|train_acc 0.917train_loss 0.00383
|epoch 3|1500/1782batches|train_acc 0.915train_loss 0.00393
---------------------------------------------------------------------
|epoch 3|time:11.61s|valid_acc 0.905valid_loss 0.004
---------------------------------------------------------------------
|epoch 4| 500/1782batches|train_acc 0.927train_loss 0.00339
|epoch 4|1000/1782batches|train_acc 0.926train_loss 0.00342
|epoch 4|1500/1782batches|train_acc 0.922train_loss 0.00352
---------------------------------------------------------------------
|epoch 4|time:11.62s|valid_acc 0.870valid_loss 0.006
---------------------------------------------------------------------
|epoch 5| 500/1782batches|train_acc 0.942train_loss 0.00276
|epoch 5|1000/1782batches|train_acc 0.945train_loss 0.00268
|epoch 5|1500/1782batches|train_acc 0.945train_loss 0.00266
---------------------------------------------------------------------
|epoch 5|time:11.67s|valid_acc 0.913valid_loss 0.004
---------------------------------------------------------------------
|epoch 6| 500/1782batches|train_acc 0.946train_loss 0.00259
|epoch 6|1000/1782batches|train_acc 0.946train_loss 0.00261
|epoch 6|1500/1782batches|train_acc 0.946train_loss 0.00261
---------------------------------------------------------------------
|epoch 6|time:11.71s|valid_acc 0.914valid_loss 0.004
---------------------------------------------------------------------
|epoch 7| 500/1782batches|train_acc 0.948train_loss 0.00255
|epoch 7|1000/1782batches|train_acc 0.946train_loss 0.00260
|epoch 7|1500/1782batches|train_acc 0.948train_loss 0.00250
---------------------------------------------------------------------
|epoch 7|time:11.68s|valid_acc 0.912valid_loss 0.004
---------------------------------------------------------------------
|epoch 8| 500/1782batches|train_acc 0.948train_loss 0.00252
|epoch 8|1000/1782batches|train_acc 0.948train_loss 0.00249
|epoch 8|1500/1782batches|train_acc 0.950train_loss 0.00244
---------------------------------------------------------------------
|epoch 8|time:11.52s|valid_acc 0.913valid_loss 0.004
---------------------------------------------------------------------
|epoch 9| 500/1782batches|train_acc 0.949train_loss 0.00249
|epoch 9|1000/1782batches|train_acc 0.950train_loss 0.00246
|epoch 9|1500/1782batches|train_acc 0.950train_loss 0.00248
---------------------------------------------------------------------
|epoch 9|time:11.57s|valid_acc 0.914valid_loss 0.004
---------------------------------------------------------------------
|epoch 10| 500/1782batches|train_acc 0.950train_loss 0.00246
|epoch 10|1000/1782batches|train_acc 0.950train_loss 0.00243
|epoch 10|1500/1782batches|train_acc 0.949train_loss 0.00249
---------------------------------------------------------------------
|epoch 10|time:11.74s|valid_acc 0.914valid_loss 0.004
---------------------------------------------------------------------
Checking the results of test dataset.
test accuracy    0.909Process finished with exit code 0

总结:PyTorch version、torchtext version、Supported Python version版本一定要对应,可以参考:https://blog.csdn.net/shiwanghualuo/article/details/122860521

相关文章:

第N3周:Pytorch文本分类入门

>- **&#x1f368; 本文为[&#x1f517;365天深度学习训练营](https://mp.weixin.qq.com/s/rbOOmire8OocQ90QM78DRA) 中的学习记录博客** >- **&#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)** import torch import…...

宝塔面板安装了mysql5.7和phpMyadmin,但是访问phpMyadmin时提示502 Bad Gateway

操作流程截图如下&#xff1a; 原因是没有选择php版本 选择php版本 下一页找到phpMyAdmin&#xff0c;选择设置 目前只有纯净态&#xff0c;说明没有php环境&#xff0c;前去安装php环境 点击安装&#xff0c;选择版本&#xff0c;这里选择的是7.4版本&#xff0c;编译安…...

K8S—Pod详解

目录 一 Pod基础概念 1.1 Pod是什么 1.2 为什么要使用Pod&#xff1f;Pod在K8S集群中的使用方式&#xff1f; 1.3 基础容器pause 二 Pod的分类 2.1 自主式Pod和控制器管理的Pod 2.2 容器的分类 2.2.1 基础容器&#xff08;infrastructure container&#xff09; 2.2.2…...

深度学习中数据的转换

原始&#xff08;文本、音频、图像、视频、传感器等&#xff09;数据被转化成结构化且适合机器学习算法或深度学习模型使用的格式。 原始数据转化为结构化且适合机器学习和深度学习模型使用的格式&#xff0c;通常需要经历以下类型的预处理和转换&#xff1a; 文本数据&#xf…...

如何系统地自学 Python?

目录 Python 数据类型 控制结构 函数和模块 文件操作 异常处理 类和对象 列表推导式和生成器 匿名函数和高阶函数 面向对象编程 总结 Python Python是一种面向对象、解释型计算机程序设计语言&#xff0c;由Guido van Rossum于1989年发明&#xff0c;第一个公开发行…...

【软考】传输层协议之UDP

目录 一、说明二、特点 一、说明 1.用户数据报协议&#xff08;User Datagram Protocol&#xff09;是一种不可靠的、无连接的协议&#xff0c;可以保证应用程序进程间的通信 2.与TCP相比&#xff0c;UDP是一种无连接的协议&#xff0c;它的错误检测功能要弱很多 3.TCP有助于提…...

微服务-微服务链路追踪组件Skywalking实战

自动化监控系统Prometheus&Grafana实战&#xff1a; https://vip.tulingxueyuan.cn/detail/v_60f96e69e4b0e6c3a312c726/3?fromp_6006cac4e4b00ff4ed156218&type8&parent_pro_idp_6006d8c8e4b00ff4ed1569b2 APM-性能监控项目班&#xff1a; https://vip.tuling…...

Stream、Collections、Collectors用法

当涉及Java编程中的集合处理时&#xff0c;Stream、Collections和Collectors是三个常用的工具。以下是它们各自的主要功能和使用的一些方法的概要&#xff1a; Stream&#xff1a; 概要&#xff1a;Stream 是 Java 8 引入的一个强大工具&#xff0c;用于处理集合数据的流式操作…...

Jetson Xavier NX 与笔记本网线连接 ,网络共享,ssh连接到vscode

Jetson Xavier NX 与笔记本网线连接 &#xff0c;网络共享&#xff0c;ssh连接到vscode Jetson Xavier NX桌面版需要连接显示屏、鼠标和键盘&#xff0c;操作起来并不方便&#xff0c;因此常常需要ssh远程连接到本地笔记本电脑&#xff0c;这里介绍一种连接方式&#xff0c;通过…...

利用netty手写rpc框架

前言&#xff1a;利用netty异步事件驱动的网络通信模型&#xff0c;来实现rpc通信 一、大致目录结构&#xff1a; 二、两个端&#xff1a;服务端&#xff08;发布&#xff09;&#xff0c;客户端&#xff08;订阅消费&#xff09;&#xff0c;上代码&#xff1a; 1.服务端&am…...

js+views 压缩上传的图片

安装image-conversion插件&#xff0c;在before-upload方法中对上传的图片文件进行处理 遇到的问题&#xff1a; 1、因为在上传文件之前的钩子中对图片进行了压缩处理&#xff0c;所以组件中上传的data会丢失&#xff0c;需要重新赋值 2、imageConversion 的引入需要使用impor…...

【安卓基础5】中级控件

&#x1f3c6;作者简介&#xff1a;|康有为| &#xff0c;大四在读&#xff0c;目前在小米安卓实习&#xff0c;毕业入职 &#x1f3c6;本文收录于 安卓学习大全持续更新中&#xff0c;欢迎关注 &#x1f3c6;安卓学习资料推荐&#xff1a; 视频&#xff1a;b站搜动脑学院 视频…...

Arthas—【学习篇】

1. Arthas官网 arthas 2. 下载 从 Maven 仓库下载 最新版本&#xff0c;点击下载&#xff1a;​编辑在新窗口打开 点击这个 mavrn-central 即可显示下面的图片 ​​ #从 Github Releases 页下载 Releases alibaba/arthas GitHub 3. 解压 将压缩包复制到一个位置&…...

css pointer-events 多层鼠标点击事件

threejs 无法滑动视角&#xff0c;菜单界面覆盖threejs操作事件。 pointer-events /* Keyword values */ pointer-events: auto; pointer-events: none; pointer-events: visiblePainted; /* SVG only */ pointer-events: visibleFill; /* SVG only */ pointer-events: visib…...

k8s中基于alpine的pod无法解析域名问题

现象 在pod内无法解析指定域名 # 执行ping bash-4.4# ping xx-xx-svc-0.xxx-fcp.svc.cluster.local ping: bad address xx-xx-svc-0.xxx-fcp.svc.cluster.local排查经过 # 执行nslookup bash-4.4# nslookup xx-xx-svc-0.xxx-fcp.svc.cluster.local Server: 172.43.0…...

缩小ppt文件大小的办法

之前用别人模版做了个PPT&#xff0c;100多M,文件存在卡顿问题 解决办法&#xff1a; 1.找到ppt中哪个文件过大&#xff0c;针对解决 2.寻找视频/音频文件&#xff0c;减少体积 3.字体文件是不是过多的问题。 一、文件寻找的内容步骤&#xff1a; 步骤&#xff1a; 1.把p…...

vue3中使用 tui-image-editor进行图片处理,并上传

效果图 下载包 pnpm i tui-image-editor pnpm i tui-color-picker调用组件 //html部分 <el-dialog v-model"imgshow" destroy-on-close width"40%" draggable align-center :show-close"true":close-on-click-modal"false">&l…...

18.贪心算法

排序贪心 区间贪心 删数贪心 统计二进制下有多少1 int Getbit_1(int n){int cnt0;while(n){nn&(n-1);cnt;}return cnt; }暴力加一维前缀和优化 #include <iostream> #include <climits> using namespace std; #define int long long const int N2e510; in…...

[AI]部署安装有道QanyThing

前提条件&#xff1a; 1、win10系统更新到最新的版本&#xff0c;系统版本最好为专业版本 winver 查看系统版本&#xff0c;内部版本要大于19045 2、CPU开启虚拟化 3、开启虚拟化功能&#xff0c;1、2、3每步完成后均需要重启电脑&#xff1b; 注&#xff1a;windows 虚拟…...

NLP_BERT与GPT争锋

文章目录 介绍小结 介绍 在开始训练GPT之前&#xff0c;我们先比较一下BERT和 GPT 这两种基于 Transformer 的预训练模型结构&#xff0c;找出它们的异同。 Transformer架构被提出后不久&#xff0c;一大批基于这个架构的预训练模型就如雨后春笋般地出现了。其中最重要、影响…...

放一个还看得过去的后台模板设置模块css样式框架

#小李子9479# 如下图 <div class"grid col-3 margin-top-xl"><?php$clist array(cyan, yellow, purple, red, blue, brown);foreach ($clist as $kk > $vv) {?><div style"max-width:400px;width:100%;padding:10px;"><div cl…...

关于信号强度单位dB和dBm区别

dB&#xff0c;dBm 都是功率增益的单位&#xff0c;不同之处如下&#xff1a; 一、dB 是一个相对值&#xff0c;表示两个量的相对大小关系&#xff0c;没有单位。当考虑甲的功率相比于乙功率大或小多少个dB时&#xff0c;按下面的计算公式&#xff1a;10log&#xff08;甲功率/…...

华清远见作业第四十二天——Qt(第四天)

思维导图&#xff1a; 编程&#xff1a; 代码&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QTextToSpeech> //语音播报类 QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public Q…...

vue2和vue3区别 浅析

vue2和vue3区别 浅析 数据响应原理 vue2 通过 Object.defineProperty 来更新数据,只会监听使用Object.defineProperty创建的(初始化)的数据&#xff0c;并通过订阅方式进行发布&#xff0c;在初始化之外的数据&#xff0c;不会受到监听&#xff1b; 在数据初始化时&#xf…...

GIT使用和简介

Git 是一个版本控制系统&#xff0c;它可以追踪文件的更改&#xff0c;并可以在不同的分支上进行并行开发。下面是 Git 的基本概念和使用方式的解释&#xff1a; 1. 仓库&#xff08;Repository&#xff09;&#xff1a;仓库是用来存储项目代码的地方。一个仓库可以包含多个文…...

HTTPS(超文本传输安全协议)被恶意请求该如何处理。

HTTPS&#xff08;超文本传输安全协议&#xff09;端口攻击通常是指SSL握手中的一些攻击方式&#xff0c;比如SSL握手协商过程中的暴力破解、中间人攻击和SSL剥离攻击等。 攻击原理 攻击者控制受害者发送大量请求&#xff0c;利用压缩算法的机制猜测请求中的关键信息&#xf…...

QT-模拟电梯上下楼

QT-模拟电梯上下楼 一、演示效果二、核心程序三、下载链接 一、演示效果 二、核心程序 #include "ElevatorController.h" #include <QGridLayout> #include <QLabel> #include <QGroupBox> #include <QGridLayout> #include <QPushButto…...

基于springboot+vue的桂林旅游景点导游平台(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…...

设计模式四:适配器模式

1、适配器模式的理解 适配器模式可以理解为有两个现成的类Adaptee和Target&#xff0c;它们两个是不能动的&#xff0c;要求必须使用B这个类来实现一个功能&#xff0c;但是A的内容是能复用的&#xff0c;这个时候我们需要编写一个转换器 适配器模式 Adaptee&#xff1a;被适…...

【AI应用】SoraWebui——在线文生视频工具

SoraWebui 是一个开源项目&#xff0c;允许用户使用 OpenAI 的 Sora 模型使用文本在线生成视频&#xff0c;从而简化视频创建&#xff0c;并具有轻松的一键网站部署功能 在 Vercel 上部署 1. 克隆项目 git clone gitgithub.com:SoraWebui/SoraWebui.git 2. 安装依赖 cd So…...

wordpress上传按钮/网站域名解析ip查询

导读&#xff1a;所谓事毕回复&#xff0c;说的是该回复就要及时回复。领导交给你的任务&#xff0c;完成了吗&#xff1f;没完成的话是因为什么&#xff1f;并且&#xff0c;工作中往往不能等任务全部完成了再回复&#xff0c;阶段性的进展也要及时报告。能及时回复领导或同事…...

wordpress手机版中文版/网站排名查询站长之家

hibernate对数据的操作都是封装在事务当中&#xff0c;并且默认是非自动提交的方式&#xff0c;所以用session保存对象时&#xff0c;如果不开启事务&#xff0c;并且手工提交事务&#xff0c;对象 并不会真正保存在数据库当中。&#xff08;不是开启事务&#xff09; 转载于:h…...

网站设计 中国风/如何优化推广中的关键词

FileReader&#xff1a;用来读取字符文件的便捷类。此类的构造方法假定默认字符编码和默认字节缓冲区大小都是适当的。要自己指定这些值&#xff0c;可以先在 FileInputStream 上构造一个 InputStreamReader。FileReader 用于读取字符流。要读取原始字节流&#xff0c;请考虑使…...

新冠走了几百万老年人/杭州seo排名公司

Java,模仿练习,输出三行信息问题描述模仿练习,编写程序&#xff0c;输出三行信息Write the program to display threemessages.要求&#xff1a;请不要复制参考代码&#xff0c;在开发工具上手工录入代码&#xff0c;运行正确后&#xff0c;在OJ上提交代码&#xff1b;参考代码…...

十大网站建设公司排名/梅花seo 快速排名软件

计算机用户协会工作总结通过一学期的准备学习&#xff0c;我校这一学期终于进入生本教育的实施阶段了。我是一个体育老师&#xff0c;出去听的报告也少&#xff0c;学习的也不怎么系统&#xff0c;但我知道生本教育是适合现代教育的教育&#xff0c;是与时俱进的教育。我们也都…...

有限责任公司章程/seo入门基础知识

“小懒&#xff0c;为什么IDM下载视频没有声音啊&#xff1f;”“为什么下载的视频只有一小段呢&#xff1f;”一般遇到这类问题&#xff0c;大概率是用IDM下载了分段加密的视频诸如“爱优腾”这些大视频平台&#xff0c;为了防止咱下载他们的视频都会将一个视频分成无数小段&a…...