当前位置: 首页 > news >正文

第N3周:Pytorch文本分类入门

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rbOOmire8OocQ90QM78DRA) 中的学习记录博客** >- **🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
import  torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")
#win10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")from torchtext.datasets import AG_NEWS
train_iter = AG_NEWS(split='train')#加载 AG News 数据集from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator#返回分词器
tokenizer = get_tokenizer('basic_english')def yield_tokens(data_iter):for _, text in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])#设置默认索引
print(vocab(['here', 'is', 'an', 'example']))text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1
print(text_pipeline('here is an example '))
print(label_pipeline('10'))from torch.utils.data import DataLoaderdef collate_batch(batch):label_list,text_list,offsets =[],[],[0]for(_label,_text)in batch:#标签列表label_list.append(label_pipeline(_label))#文本列表processed_text =torch.tensor(text_pipeline(_text),dtype=torch.int64)text_list.append(processed_text)#偏移量,即语句的总词汇量offsets.append(processed_text.size(0))label_list =torch.tensor(label_list,dtype=torch.int64)text_list=torch.cat(text_list)offsets=torch.tensor(offsets[:-1]).cumsum(dim=0)#返回维度dim中输入元素的累计和return label_list.to(device),text_list.to(device),offsets.to(device)
#数据加载器
dataloader =DataLoader(train_iter,batch_size=8,shuffle   =False,collate_fn=collate_batch)from torch import nn
class TextClassificationModel(nn.Module):def __init__(self,vocab_size,embed_dim,num_class):super(TextClassificationModel,self).__init__()self.embedding =nn.EmbeddingBag(vocab_size,#词典大小embed_dim,#嵌入的维度sparse=False)#self.fc =nn.Linear(embed_dim,num_class)self.init_weights()def init_weights(self):initrange =0.5self.embedding.weight.data.uniform_(-initrange,initrange)self.fc.weight.data.uniform_(-initrange,initrange)self.fc.bias.data.zero_()def forward(self,text,offsets):embedded =self.embedding(text,offsets)return self.fc(embedded)num_class = len(set([label for(label,text)in train_iter]))
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size,em_size,num_class).to(device)import time
def train(dataloader):model.train()  #切换为训练模式total_acc,train_loss,total_count =0,0,0log_interval =500start_time   =time.time()for idx,(label,text,offsets) in enumerate(dataloader):predicted_label =model(text,offsets)optimizer.zero_grad()#grad属性归零loss =criterion(predicted_label,label)#计算网络输出和真实值之间的差距,labe1为真实值loss.backward()#反向传播optimizer.step()  #每一步自动更新#记录acc与losstotal_acc   +=(predicted_label.argmax(1)==label).sum().item()train_loss  +=loss.item()total_count +=label.size(0)if idx %log_interval ==0 and idx >0:elapsed =time.time()-start_timeprint('|epoch {:1d}|{:4d}/{:4d}batches''|train_acc {:4.3f}train_loss {:4.5f}'.format(epoch,idx,len(dataloader),total_acc/total_count,train_loss/total_count))total_acc,train_loss,total_count =0,0,0start_time =time.time()def evaluate(dataloader):model.eval()  #切换为测试模式total_acc,train_loss,total_count =0,0,0with torch.no_grad():for idx,(label,text,offsets)in enumerate(dataloader):predicted_label =model(text,offsets)loss = criterion(predicted_label,label)  #计算loss值#记录测试数据total_acc   +=(predicted_label.argmax(1)==label).sum().item()train_loss  +=loss.item()total_count +=label.size(0)return total_acc/total_count,train_loss/total_countfrom torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
#超参数
EPOCHS=10 #epoch
LR=5  #学习率
BATCH_SIZE=64 #batch size for training
criterion =torch.nn.CrossEntropyLoss()
optimizer =torch.optim.SGD(model.parameters(),lr=LR)
scheduler =torch.optim.lr_scheduler.StepLR(optimizer,1.0,gamma=0.1)
total_accu =Nonetrain_iter,test_iter =AG_NEWS()#加载数据
train_dataset =to_map_style_dataset(train_iter)
test_dataset =to_map_style_dataset(test_iter)
num_train=int(len(train_dataset)*0.95)split_train_,split_valid_=random_split(train_dataset,[num_train,len(train_dataset)-num_train])
train_dataloader =DataLoader(split_train_,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
valid_dataloader =DataLoader(split_valid_,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
test_dataloader=DataLoader(test_dataset,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)for epoch in range(1,EPOCHS +1):epoch_start_time =time.time()train(train_dataloader)val_acc,val_loss =evaluate(valid_dataloader)if total_accu is not None and total_accu >val_acc:scheduler.step()else:total_accu =val_accprint('-'*69)print('|epoch {:1d}|time:{:4.2f}s|''valid_acc {:4.3f}valid_loss {:4.3f}'.format(epoch,time.time()-epoch_start_time,val_acc,val_loss))print('-'*69)print('Checking the results of test dataset.')
test_acc,test_loss =evaluate(test_dataloader)
print('test accuracy {:8.3f}'.format(test_acc))

文本构建向量的基本原理:

下面是运行结果:

D:\Code\pythonProject_PyTorch\venv\Scripts\python.exe D:\Code\pythonProject_PyTorch\PytorchText.py 
[475, 21, 30, 5297]
[475, 21, 30, 5297]
9
|epoch 1| 500/1782batches|train_acc 0.721train_loss 0.01110
|epoch 1|1000/1782batches|train_acc 0.871train_loss 0.00606
|epoch 1|1500/1782batches|train_acc 0.877train_loss 0.00562
---------------------------------------------------------------------
|epoch 1|time:11.86s|valid_acc 0.782valid_loss 0.009
---------------------------------------------------------------------
|epoch 2| 500/1782batches|train_acc 0.903train_loss 0.00451
|epoch 2|1000/1782batches|train_acc 0.906train_loss 0.00442
|epoch 2|1500/1782batches|train_acc 0.906train_loss 0.00436
---------------------------------------------------------------------
|epoch 2|time:11.64s|valid_acc 0.845valid_loss 0.007
---------------------------------------------------------------------
|epoch 3| 500/1782batches|train_acc 0.919train_loss 0.00374
|epoch 3|1000/1782batches|train_acc 0.917train_loss 0.00383
|epoch 3|1500/1782batches|train_acc 0.915train_loss 0.00393
---------------------------------------------------------------------
|epoch 3|time:11.61s|valid_acc 0.905valid_loss 0.004
---------------------------------------------------------------------
|epoch 4| 500/1782batches|train_acc 0.927train_loss 0.00339
|epoch 4|1000/1782batches|train_acc 0.926train_loss 0.00342
|epoch 4|1500/1782batches|train_acc 0.922train_loss 0.00352
---------------------------------------------------------------------
|epoch 4|time:11.62s|valid_acc 0.870valid_loss 0.006
---------------------------------------------------------------------
|epoch 5| 500/1782batches|train_acc 0.942train_loss 0.00276
|epoch 5|1000/1782batches|train_acc 0.945train_loss 0.00268
|epoch 5|1500/1782batches|train_acc 0.945train_loss 0.00266
---------------------------------------------------------------------
|epoch 5|time:11.67s|valid_acc 0.913valid_loss 0.004
---------------------------------------------------------------------
|epoch 6| 500/1782batches|train_acc 0.946train_loss 0.00259
|epoch 6|1000/1782batches|train_acc 0.946train_loss 0.00261
|epoch 6|1500/1782batches|train_acc 0.946train_loss 0.00261
---------------------------------------------------------------------
|epoch 6|time:11.71s|valid_acc 0.914valid_loss 0.004
---------------------------------------------------------------------
|epoch 7| 500/1782batches|train_acc 0.948train_loss 0.00255
|epoch 7|1000/1782batches|train_acc 0.946train_loss 0.00260
|epoch 7|1500/1782batches|train_acc 0.948train_loss 0.00250
---------------------------------------------------------------------
|epoch 7|time:11.68s|valid_acc 0.912valid_loss 0.004
---------------------------------------------------------------------
|epoch 8| 500/1782batches|train_acc 0.948train_loss 0.00252
|epoch 8|1000/1782batches|train_acc 0.948train_loss 0.00249
|epoch 8|1500/1782batches|train_acc 0.950train_loss 0.00244
---------------------------------------------------------------------
|epoch 8|time:11.52s|valid_acc 0.913valid_loss 0.004
---------------------------------------------------------------------
|epoch 9| 500/1782batches|train_acc 0.949train_loss 0.00249
|epoch 9|1000/1782batches|train_acc 0.950train_loss 0.00246
|epoch 9|1500/1782batches|train_acc 0.950train_loss 0.00248
---------------------------------------------------------------------
|epoch 9|time:11.57s|valid_acc 0.914valid_loss 0.004
---------------------------------------------------------------------
|epoch 10| 500/1782batches|train_acc 0.950train_loss 0.00246
|epoch 10|1000/1782batches|train_acc 0.950train_loss 0.00243
|epoch 10|1500/1782batches|train_acc 0.949train_loss 0.00249
---------------------------------------------------------------------
|epoch 10|time:11.74s|valid_acc 0.914valid_loss 0.004
---------------------------------------------------------------------
Checking the results of test dataset.
test accuracy    0.909Process finished with exit code 0

总结:PyTorch version、torchtext version、Supported Python version版本一定要对应,可以参考:https://blog.csdn.net/shiwanghualuo/article/details/122860521

相关文章:

第N3周:Pytorch文本分类入门

>- **&#x1f368; 本文为[&#x1f517;365天深度学习训练营](https://mp.weixin.qq.com/s/rbOOmire8OocQ90QM78DRA) 中的学习记录博客** >- **&#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)** import torch import…...

宝塔面板安装了mysql5.7和phpMyadmin,但是访问phpMyadmin时提示502 Bad Gateway

操作流程截图如下&#xff1a; 原因是没有选择php版本 选择php版本 下一页找到phpMyAdmin&#xff0c;选择设置 目前只有纯净态&#xff0c;说明没有php环境&#xff0c;前去安装php环境 点击安装&#xff0c;选择版本&#xff0c;这里选择的是7.4版本&#xff0c;编译安…...

K8S—Pod详解

目录 一 Pod基础概念 1.1 Pod是什么 1.2 为什么要使用Pod&#xff1f;Pod在K8S集群中的使用方式&#xff1f; 1.3 基础容器pause 二 Pod的分类 2.1 自主式Pod和控制器管理的Pod 2.2 容器的分类 2.2.1 基础容器&#xff08;infrastructure container&#xff09; 2.2.2…...

深度学习中数据的转换

原始&#xff08;文本、音频、图像、视频、传感器等&#xff09;数据被转化成结构化且适合机器学习算法或深度学习模型使用的格式。 原始数据转化为结构化且适合机器学习和深度学习模型使用的格式&#xff0c;通常需要经历以下类型的预处理和转换&#xff1a; 文本数据&#xf…...

如何系统地自学 Python?

目录 Python 数据类型 控制结构 函数和模块 文件操作 异常处理 类和对象 列表推导式和生成器 匿名函数和高阶函数 面向对象编程 总结 Python Python是一种面向对象、解释型计算机程序设计语言&#xff0c;由Guido van Rossum于1989年发明&#xff0c;第一个公开发行…...

【软考】传输层协议之UDP

目录 一、说明二、特点 一、说明 1.用户数据报协议&#xff08;User Datagram Protocol&#xff09;是一种不可靠的、无连接的协议&#xff0c;可以保证应用程序进程间的通信 2.与TCP相比&#xff0c;UDP是一种无连接的协议&#xff0c;它的错误检测功能要弱很多 3.TCP有助于提…...

微服务-微服务链路追踪组件Skywalking实战

自动化监控系统Prometheus&Grafana实战&#xff1a; https://vip.tulingxueyuan.cn/detail/v_60f96e69e4b0e6c3a312c726/3?fromp_6006cac4e4b00ff4ed156218&type8&parent_pro_idp_6006d8c8e4b00ff4ed1569b2 APM-性能监控项目班&#xff1a; https://vip.tuling…...

Stream、Collections、Collectors用法

当涉及Java编程中的集合处理时&#xff0c;Stream、Collections和Collectors是三个常用的工具。以下是它们各自的主要功能和使用的一些方法的概要&#xff1a; Stream&#xff1a; 概要&#xff1a;Stream 是 Java 8 引入的一个强大工具&#xff0c;用于处理集合数据的流式操作…...

Jetson Xavier NX 与笔记本网线连接 ,网络共享,ssh连接到vscode

Jetson Xavier NX 与笔记本网线连接 &#xff0c;网络共享&#xff0c;ssh连接到vscode Jetson Xavier NX桌面版需要连接显示屏、鼠标和键盘&#xff0c;操作起来并不方便&#xff0c;因此常常需要ssh远程连接到本地笔记本电脑&#xff0c;这里介绍一种连接方式&#xff0c;通过…...

利用netty手写rpc框架

前言&#xff1a;利用netty异步事件驱动的网络通信模型&#xff0c;来实现rpc通信 一、大致目录结构&#xff1a; 二、两个端&#xff1a;服务端&#xff08;发布&#xff09;&#xff0c;客户端&#xff08;订阅消费&#xff09;&#xff0c;上代码&#xff1a; 1.服务端&am…...

js+views 压缩上传的图片

安装image-conversion插件&#xff0c;在before-upload方法中对上传的图片文件进行处理 遇到的问题&#xff1a; 1、因为在上传文件之前的钩子中对图片进行了压缩处理&#xff0c;所以组件中上传的data会丢失&#xff0c;需要重新赋值 2、imageConversion 的引入需要使用impor…...

【安卓基础5】中级控件

&#x1f3c6;作者简介&#xff1a;|康有为| &#xff0c;大四在读&#xff0c;目前在小米安卓实习&#xff0c;毕业入职 &#x1f3c6;本文收录于 安卓学习大全持续更新中&#xff0c;欢迎关注 &#x1f3c6;安卓学习资料推荐&#xff1a; 视频&#xff1a;b站搜动脑学院 视频…...

Arthas—【学习篇】

1. Arthas官网 arthas 2. 下载 从 Maven 仓库下载 最新版本&#xff0c;点击下载&#xff1a;​编辑在新窗口打开 点击这个 mavrn-central 即可显示下面的图片 ​​ #从 Github Releases 页下载 Releases alibaba/arthas GitHub 3. 解压 将压缩包复制到一个位置&…...

css pointer-events 多层鼠标点击事件

threejs 无法滑动视角&#xff0c;菜单界面覆盖threejs操作事件。 pointer-events /* Keyword values */ pointer-events: auto; pointer-events: none; pointer-events: visiblePainted; /* SVG only */ pointer-events: visibleFill; /* SVG only */ pointer-events: visib…...

k8s中基于alpine的pod无法解析域名问题

现象 在pod内无法解析指定域名 # 执行ping bash-4.4# ping xx-xx-svc-0.xxx-fcp.svc.cluster.local ping: bad address xx-xx-svc-0.xxx-fcp.svc.cluster.local排查经过 # 执行nslookup bash-4.4# nslookup xx-xx-svc-0.xxx-fcp.svc.cluster.local Server: 172.43.0…...

缩小ppt文件大小的办法

之前用别人模版做了个PPT&#xff0c;100多M,文件存在卡顿问题 解决办法&#xff1a; 1.找到ppt中哪个文件过大&#xff0c;针对解决 2.寻找视频/音频文件&#xff0c;减少体积 3.字体文件是不是过多的问题。 一、文件寻找的内容步骤&#xff1a; 步骤&#xff1a; 1.把p…...

vue3中使用 tui-image-editor进行图片处理,并上传

效果图 下载包 pnpm i tui-image-editor pnpm i tui-color-picker调用组件 //html部分 <el-dialog v-model"imgshow" destroy-on-close width"40%" draggable align-center :show-close"true":close-on-click-modal"false">&l…...

18.贪心算法

排序贪心 区间贪心 删数贪心 统计二进制下有多少1 int Getbit_1(int n){int cnt0;while(n){nn&(n-1);cnt;}return cnt; }暴力加一维前缀和优化 #include <iostream> #include <climits> using namespace std; #define int long long const int N2e510; in…...

[AI]部署安装有道QanyThing

前提条件&#xff1a; 1、win10系统更新到最新的版本&#xff0c;系统版本最好为专业版本 winver 查看系统版本&#xff0c;内部版本要大于19045 2、CPU开启虚拟化 3、开启虚拟化功能&#xff0c;1、2、3每步完成后均需要重启电脑&#xff1b; 注&#xff1a;windows 虚拟…...

NLP_BERT与GPT争锋

文章目录 介绍小结 介绍 在开始训练GPT之前&#xff0c;我们先比较一下BERT和 GPT 这两种基于 Transformer 的预训练模型结构&#xff0c;找出它们的异同。 Transformer架构被提出后不久&#xff0c;一大批基于这个架构的预训练模型就如雨后春笋般地出现了。其中最重要、影响…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...