回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
目录
- 回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
- 预测效果
- 基本描述
- 程序设计
- 参考资料
预测效果
基本描述
1.Matlab实现PSO-BiLSTM-Attention多变量回归预测,粒子群算法优化双向长短期记忆神经网络融合注意力机制;
粒子群算法优化BiLSTM的学习率,隐藏层节点,正则化系数;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
程序设计
- 完整程序和数据获取方式资源出下载Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测。
%% 参数设置
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
% restoredefaultpath%% 导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train,f_, 1, 1, M));
P_test = double(reshape(P_test ,f_, 1, 1, N));t_train = t_train';
t_test = t_test' ;%% 数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end%% 优化函数
fobj = @(x)fical(x);
%% 优化算法参数设置
pop = 5; % 数量
Max_iter = 8; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3, 32, 1e-3]; % 参数取值下界(学习率,批大小,正则化系数)
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测 目录 回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测预测效果基本描述程序设计参考资料 预测效果…...
[算法沉淀记录] 排序算法 —— 堆排序
排序算法 —— 堆排序 算法基础介绍 堆排序(Heap Sort)是一种基于比较的排序算法,它利用堆这种数据结构来实现排序。堆是一种特殊的完全二叉树,其中每个节点的值都必须大于或等于(最大堆)或小于或等于&am…...
C++ //练习 9.33 在本节最后一个例子中,如果不将insert的结果赋予begin,将会发生什么?编写程序,去掉此赋值语句,验证你的答案。
C Primer(第5版) 练习 9.33 练习 9.33 在本节最后一个例子中,如果不将insert的结果赋予begin,将会发生什么?编写程序,去掉此赋值语句,验证你的答案。 环境:Linux Ubuntu࿰…...
[corCTF 2022] CoRJail: From Null Byte Overflow To Docker Escape
前言 题目来源:竞赛官网 – 建议这里下载,文件系统/带符号的 vmlinux 给了 参考 [corCTF 2022] CoRJail: From Null Byte Overflow To Docker Escape Exploiting poll_list Objects In The Linux Kernel – 原作者文章,poll_list 利用方式…...
thinkphp6定时任务
这里主要是教没有用过定时任务没有头绪的朋友, 定时任务可以处理一些定时备份数据库等一系列操作, 具体根据自己的业务逻辑进行更改 直接上代码 首先, 是先在 tp 中的 command 方法中声明, 如果没有就自己新建一个, 代码如下 然后就是写你的业务逻辑 执行定时任务 方法写好了…...
支持国密ssl的curl编译和测试验证(上)
目录 1. 编译铜锁ssl库2. 编译nghttp2库3. 编译curl4. 验证4.1 查看版本信息4.2 验证国密ssl握手功能4.3 验证http2协议功能 以下以ubuntu 22.04环境为例进行编译 本次编译采用铜锁sslnghttp2curl,使得编译出来的curl可以支持国密ssl,并且可以支持http2…...
包装类详解
概述 Java提供了两个类型系统,基本类型与引用类型,使用基本类型在于效率,然而很多情况,会创建对象使用,因为对象可以做更多的功能,如果想要我们的基本类型像对象一样操作,就可以使用基本类型对…...
vue3与vue2的区别
Vue 3和Vue 2在以下几个方面有一些区别: 性能提升:Vue 3对渲染性能和内存占用进行了优化,使用了Proxy代理对象,比Vue 2的Object.defineProperty更高效。此外,Vue 3还引入了静态树提升(Static Tree Hoisting…...
SSL OV证书和DV、EV证书的区别
在网站搭建的过程中和小程序开发过程中,很难免会有需要用到SSL证书的地方,但是目前数字证书种类繁多,该选择什么类型的证书成为了一个令人纠结的问题。 目前在市场上较为常见的证书分为三种:DV域名验证型证书;OV组织验…...
一款.NET下 WPF UI框架介绍
WPF开源的UI框架有很多,如HandyControl、MahApps.Metro、Xceed Extended WPF Toolkit™、Modern UI for WPF (MUI)、Layui-WPF、MaterialDesignInXamlToolkit、等等,今天小编带大家认识一款比较常用的kaiyuanUI---WPF UI,这款ui框架美观现代化,用起来也超级方便, 界面展示…...
东莞IBM服务器维修之IBM x3630 M4阵列恢复
记录东莞某抖音电商公司送修一台IBM SYSTEM X3630 M4文档服务器RAID6故障导致数据丢失的恢复案例 时间:2024年02月20日, 服务器品牌:IBM System x3630 M4,阵列卡用的是DELL PERC H730P 服务器用途和用户位置:某抖音电…...
Flask基础学习4
19-【实战】问答平台项目结构搭建_剪_哔哩哔哩_bilibili 参考如上大佬的视频教程,本博客仅当学习笔记,侵权请联系删除 问答发布的web前端页面实现 register.html {% extends base.html %}{% block head %}<link rel"stylesheet" href&q…...
mac安装zookeeper
下载地址: http://archive.apache.org/dist/zookeeper/ 注意:由于Zookeeper从3.5.5版本开始,带有bin名称的包才是我们想要的下载可以直接使用的里面有编译后的二进制的包,而之前的普通的tar.gz的包里面是只是源码的包无法直接使…...
IT资讯——全速推进“AI+鸿蒙”战略布局!
文章目录 每日一句正能量前言坚持长期研发投入全速推进“AI鸿蒙”战略 人才战略新章落地持续加码核心技术生态建设 后记 每日一句正能量 人总要咽下一些委屈,然后一字不提的擦干眼泪往前走,没有人能像白纸一样没有故事,成长的代价就是失去原来…...
数据结构知识点总结-线性表(3)-双向链表定义、循环单链表、、循环双向链表、静态链表、顺序表与链表的比较
双向链表定义 单链表结点中只有一个指向其后继的指针,这使得单链表只能从头结点依次顺序地向后遍历。若要访问某个结点的前驱结点(插入、删除操作时),只能从头开始遍历,访问后继结点的时间复杂度为 O(1) , …...
JAVA学习-控制执行流程.for
在Java中,for循环是一种常用的控制执行流程的循环语句。它允许我们重复执行一段代码,直到满足指定的循环条件。 一、for循环的基本语法如下: for (初始化语句; 循环条件; 循环后操作) {// 循环体,要执行的代码} 其中,…...
面试总结之JVM入门
文章目录 🐒个人主页🏅JavaEE系列专栏📖前言:🎀你为什么要学习JVM?🎀JVM的作用 🎀JVM的构成(5大类)🏨1.类加载系统🐕类什么时候会被加…...
适配器模式(Adapter Pattern) C++
上一节:原型模式(Prototype Pattern) C 文章目录 0.理论1.组件2.类型3.什么时候使用 1.实践1.基础接口和类2.类适配器实现3.对象适配器实现 0.理论 适配器模式(Adapter Pattern)是一种结构型设计模式,它允…...
【程序员英语】【美语从头学】初级篇(入门)(笔记)Lesson 16 At the Shoe Store 在鞋店
《美语从头学初级入门篇》 注意:被 删除线 划掉的不一定不正确,只是不是标准答案。 文章目录 Lesson 16 At the Shoe Store 在鞋店对话A对话B笔记会话A会话B替换 Lesson 16 At the Shoe Store 在鞋店 对话A A: Do you have these shoes in size 8? B:…...
嵌入式系统在物联网中的应用与发展趋势
嵌入式系统在物联网中的应用与发展趋势 嵌入式系统在物联网中扮演着至关重要的角色,它们是连接物理世界和数字世界的桥梁,实现了物体之间的互联互通。以下是嵌入式系统在物联网中的应用与发展趋势的几个方面: 1. 应用领域 智能家居&#x…...
BTC网络 vs ETH网络
设计理念 BTC 网络 比特币是一种数字货币,旨在作为一种去中心化的、不受政府或金融机构控制的电子货币。其主要目标是实现安全的价值传输和储存,比特币的设计强调去中心化和抗审查。 ETH 网络 以太坊是一个智能合约平台,旨在支持分散的应…...
Android 开发一个耳返程序(录音,实时播放)
本文目录 点击直达 Android 开发一个耳返程序程序编写1. 配置 AndroidManifast.xml2.编写耳返管理器3. 录音权限申请4. 使用注意 最后我还有一句话要说怕相思,已相思,轮到相思没处辞,眉间露一丝 Android 开发一个耳返程序 耳返程序是声音录入…...
提高办公效率:Excel在文秘与行政办公中的应用技巧
💂 个人网站:【 海拥】【神级代码资源网站】【办公神器】🤟 基于Web端打造的:👉轻量化工具创作平台💅 想寻找共同学习交流的小伙伴,请点击【全栈技术交流群】 在当今信息化时代,Excel作为一款常…...
Object.groupBy分组方法
在某些浏览器的某些版本中,此方法被实现为 Array.prototype.group() 方法。由于 web 兼容性问题,它现在以静态方法实现。 函数功能 提供的回调函数返回的字符串值对给定可迭代对象中的元素进行分组。返回的对象具有每个组的单独属性,其中包…...
从初步的需求收集到详细的规划和评估
综合需求分析建议 明确与细化用户故事 确保每个用户故事清晰、具体,包含角色、目标和成功标准。对用户故事进行优先级排序,以指导开发过程中的功能实现顺序。用户参与和原型制作 创建用户旅程图,以理解用户在使用产品或服务时的整体流程与体验。制作原型或草图,展示用户界面…...
石灰窑工艺流程以及富氧低氧燃烧技术
石灰窑的核心环节是煅烧过程,这是将石灰石转变为生石灰的关键步骤。煅烧反应是碳酸钙(CaCO₃)分解为氧化钙(CaO)和二氧化碳(CO₂)的过程。这一反应需要高温条件,通常在800摄氏度以上…...
LeetCode 2960.统计已测试设备
给你一个长度为 n 、下标从 0 开始的整数数组 batteryPercentages ,表示 n 个设备的电池百分比。 你的任务是按照顺序测试每个设备 i,执行以下测试操作: 如果 batteryPercentages[i] 大于 0: 增加 已测试设备的计数。 将下标在 …...
vue中component is和keepAlive组合使用
component is用与动态渲染组件 组件基础 | Vue.js <template><div style"padding: 30px"><button click"change(1)">组件1</button><button click"change(2)">组件2</button><button click"chang…...
使用 Koltin 集合时容易产生的 bug 注意事项
来看下面代码: class ChatManager {private val messages mutableListOf<Message>()/*** 当收到消息时回调*/fun onMessageReceived(message: Message) {messages.add(message)}/*** 当删除消息时回调*/fun onMessageDeleted(message: Message) {messages.r…...
CKA认证,开启您的云原生之旅!
在当今数字化时代,云计算已经成为企业和个人发展的关键技术。而获得CKA(Certified Kubernetes Administrator)认证,将是您在云原生领域迈出的重要一步。 CKA认证是由Kubernetes官方推出的权威认证,它旨在验证您在Kuber…...
模板网站没有源代码/今日新闻摘抄
vue路由安装与基本使用vue嵌套路由vue动态路由(路由组件传参)vue路由重定向和一些其他的路由相关官方手册:https://router.vuejs.org/zh/一、vue路由安装与基本使用 在项目根文件夹下执行以下命令安装vue-ruoter: vue add router 执行命令后会…...
公司做网站要注意什么/百度后台登录
1. 实践题目 7-3 两个有序序列的中位数 2. 问题描述 已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数。有序序列A0,A1,⋯,AN−1的中位数指A(N−1)/2的值,即第⌊(N1)/2⌋个数(A0为第1个数)。 Input 在一行…...
绵阳企业品牌网站建设/武汉百度推广代运营
你发现了吗?抖音开始关注老年化群体了,征集60岁以上的老人共同参与新项目的制作。的确,在互联网的产品日益增多的今天,应该考虑不同年龄层的使用体验。而电子邮箱作为具有30年经验的产品,第一批的60后、70后使用者如今…...
logo图案设计/快排seo软件
C友元函数和友元类(C friend关键字) 在 C 中,一个类中可以有 public、protected、private 三种属性的成员,通过对象可以访问 public 成员,只有本类中的函数可以访问本类的 private 成员。现在,我们来介绍一…...
个人做网站的时代已经过去/外链代发软件
一、支付宝介绍 支付宝开放平台入口 支付宝开放平台1. 创建应用和沙箱环境 1.创建应用 2.沙箱环境 支付宝提供给开发者的模拟支付的环境。跟真实环境是分开的。 沙箱应用:登录 - 支付宝 沙箱账号:登录 - 支付宝 2. 支付宝开发文档 文档主页: …...
整站优化方案/站长之家seo综合
C/C中没有提供直接获取数组长度的函数。对于存放字符串的字符数组,可用strlen函数获取长度。 如:char a[]"hello world";int count strlen(a); 对于其他类型的数组,可使用sizeof(array)/sizeof(array[0]),计算长度。 在…...