回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
目录
- 回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
- 预测效果
- 基本描述
- 程序设计
- 参考资料
预测效果






基本描述
1.Matlab实现PSO-BiLSTM-Attention多变量回归预测,粒子群算法优化双向长短期记忆神经网络融合注意力机制;
粒子群算法优化BiLSTM的学习率,隐藏层节点,正则化系数;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

程序设计
- 完整程序和数据获取方式资源出下载Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测。
%% 参数设置
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
% restoredefaultpath%% 导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train,f_, 1, 1, M));
P_test = double(reshape(P_test ,f_, 1, 1, N));t_train = t_train';
t_test = t_test' ;%% 数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end%% 优化函数
fobj = @(x)fical(x);
%% 优化算法参数设置
pop = 5; % 数量
Max_iter = 8; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3, 32, 1e-3]; % 参数取值下界(学习率,批大小,正则化系数)
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测 目录 回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测预测效果基本描述程序设计参考资料 预测效果…...
[算法沉淀记录] 排序算法 —— 堆排序
排序算法 —— 堆排序 算法基础介绍 堆排序(Heap Sort)是一种基于比较的排序算法,它利用堆这种数据结构来实现排序。堆是一种特殊的完全二叉树,其中每个节点的值都必须大于或等于(最大堆)或小于或等于&am…...
C++ //练习 9.33 在本节最后一个例子中,如果不将insert的结果赋予begin,将会发生什么?编写程序,去掉此赋值语句,验证你的答案。
C Primer(第5版) 练习 9.33 练习 9.33 在本节最后一个例子中,如果不将insert的结果赋予begin,将会发生什么?编写程序,去掉此赋值语句,验证你的答案。 环境:Linux Ubuntu࿰…...
[corCTF 2022] CoRJail: From Null Byte Overflow To Docker Escape
前言 题目来源:竞赛官网 – 建议这里下载,文件系统/带符号的 vmlinux 给了 参考 [corCTF 2022] CoRJail: From Null Byte Overflow To Docker Escape Exploiting poll_list Objects In The Linux Kernel – 原作者文章,poll_list 利用方式…...
thinkphp6定时任务
这里主要是教没有用过定时任务没有头绪的朋友, 定时任务可以处理一些定时备份数据库等一系列操作, 具体根据自己的业务逻辑进行更改 直接上代码 首先, 是先在 tp 中的 command 方法中声明, 如果没有就自己新建一个, 代码如下 然后就是写你的业务逻辑 执行定时任务 方法写好了…...
支持国密ssl的curl编译和测试验证(上)
目录 1. 编译铜锁ssl库2. 编译nghttp2库3. 编译curl4. 验证4.1 查看版本信息4.2 验证国密ssl握手功能4.3 验证http2协议功能 以下以ubuntu 22.04环境为例进行编译 本次编译采用铜锁sslnghttp2curl,使得编译出来的curl可以支持国密ssl,并且可以支持http2…...
包装类详解
概述 Java提供了两个类型系统,基本类型与引用类型,使用基本类型在于效率,然而很多情况,会创建对象使用,因为对象可以做更多的功能,如果想要我们的基本类型像对象一样操作,就可以使用基本类型对…...
vue3与vue2的区别
Vue 3和Vue 2在以下几个方面有一些区别: 性能提升:Vue 3对渲染性能和内存占用进行了优化,使用了Proxy代理对象,比Vue 2的Object.defineProperty更高效。此外,Vue 3还引入了静态树提升(Static Tree Hoisting…...
SSL OV证书和DV、EV证书的区别
在网站搭建的过程中和小程序开发过程中,很难免会有需要用到SSL证书的地方,但是目前数字证书种类繁多,该选择什么类型的证书成为了一个令人纠结的问题。 目前在市场上较为常见的证书分为三种:DV域名验证型证书;OV组织验…...
一款.NET下 WPF UI框架介绍
WPF开源的UI框架有很多,如HandyControl、MahApps.Metro、Xceed Extended WPF Toolkit™、Modern UI for WPF (MUI)、Layui-WPF、MaterialDesignInXamlToolkit、等等,今天小编带大家认识一款比较常用的kaiyuanUI---WPF UI,这款ui框架美观现代化,用起来也超级方便, 界面展示…...
东莞IBM服务器维修之IBM x3630 M4阵列恢复
记录东莞某抖音电商公司送修一台IBM SYSTEM X3630 M4文档服务器RAID6故障导致数据丢失的恢复案例 时间:2024年02月20日, 服务器品牌:IBM System x3630 M4,阵列卡用的是DELL PERC H730P 服务器用途和用户位置:某抖音电…...
Flask基础学习4
19-【实战】问答平台项目结构搭建_剪_哔哩哔哩_bilibili 参考如上大佬的视频教程,本博客仅当学习笔记,侵权请联系删除 问答发布的web前端页面实现 register.html {% extends base.html %}{% block head %}<link rel"stylesheet" href&q…...
mac安装zookeeper
下载地址: http://archive.apache.org/dist/zookeeper/ 注意:由于Zookeeper从3.5.5版本开始,带有bin名称的包才是我们想要的下载可以直接使用的里面有编译后的二进制的包,而之前的普通的tar.gz的包里面是只是源码的包无法直接使…...
IT资讯——全速推进“AI+鸿蒙”战略布局!
文章目录 每日一句正能量前言坚持长期研发投入全速推进“AI鸿蒙”战略 人才战略新章落地持续加码核心技术生态建设 后记 每日一句正能量 人总要咽下一些委屈,然后一字不提的擦干眼泪往前走,没有人能像白纸一样没有故事,成长的代价就是失去原来…...
数据结构知识点总结-线性表(3)-双向链表定义、循环单链表、、循环双向链表、静态链表、顺序表与链表的比较
双向链表定义 单链表结点中只有一个指向其后继的指针,这使得单链表只能从头结点依次顺序地向后遍历。若要访问某个结点的前驱结点(插入、删除操作时),只能从头开始遍历,访问后继结点的时间复杂度为 O(1) , …...
JAVA学习-控制执行流程.for
在Java中,for循环是一种常用的控制执行流程的循环语句。它允许我们重复执行一段代码,直到满足指定的循环条件。 一、for循环的基本语法如下: for (初始化语句; 循环条件; 循环后操作) {// 循环体,要执行的代码} 其中,…...
面试总结之JVM入门
文章目录 🐒个人主页🏅JavaEE系列专栏📖前言:🎀你为什么要学习JVM?🎀JVM的作用 🎀JVM的构成(5大类)🏨1.类加载系统🐕类什么时候会被加…...
适配器模式(Adapter Pattern) C++
上一节:原型模式(Prototype Pattern) C 文章目录 0.理论1.组件2.类型3.什么时候使用 1.实践1.基础接口和类2.类适配器实现3.对象适配器实现 0.理论 适配器模式(Adapter Pattern)是一种结构型设计模式,它允…...
【程序员英语】【美语从头学】初级篇(入门)(笔记)Lesson 16 At the Shoe Store 在鞋店
《美语从头学初级入门篇》 注意:被 删除线 划掉的不一定不正确,只是不是标准答案。 文章目录 Lesson 16 At the Shoe Store 在鞋店对话A对话B笔记会话A会话B替换 Lesson 16 At the Shoe Store 在鞋店 对话A A: Do you have these shoes in size 8? B:…...
嵌入式系统在物联网中的应用与发展趋势
嵌入式系统在物联网中的应用与发展趋势 嵌入式系统在物联网中扮演着至关重要的角色,它们是连接物理世界和数字世界的桥梁,实现了物体之间的互联互通。以下是嵌入式系统在物联网中的应用与发展趋势的几个方面: 1. 应用领域 智能家居&#x…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
