pytorch -- torch.nn下的常用损失函数
1.基础
loss function损失函数:预测输出与实际输出 差距 越小越好
- 计算实际输出和目标之间的差距
- 为我们更新输出提供依据(反向传播)
1. L1
torch.nn.L1Loss(size_average=None, reduce=None, reduction=‘mean’)
2. 平方差(L2)
torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)
3. 交叉熵
torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction=‘mean’, label_smoothing=0.0)
2. 例子
代码:
import torch
from torch import nninput = torch.tensor([1,2,3],dtype=torch.float32)
input = torch.reshape(input,[1,1,1,3])
target = torch.tensor([1,2,5],dtype=torch.float32)
target = torch.reshape(target,[1,1,1,3])
# L1
l1 = nn.L1Loss(reduction='sum')
result1 = l1(input,target)
print(result1)
# L2
l2 = nn.MSELoss()
result2 = l2(input,target)
print(result2)# 交叉熵损失
x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,[1,3])
loss_cross = nn.CrossEntropyLoss()
result = loss_cross(x,y)
print(result)
输出

相关文章:
pytorch -- torch.nn下的常用损失函数
1.基础 loss function损失函数:预测输出与实际输出 差距 越小越好 - 计算实际输出和目标之间的差距 - 为我们更新输出提供依据(反向传播) 1. L1 torch.nn.L1Loss(size_averageNone, reduceNone, reduction‘mean’) 2. 平方差(…...
daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具
daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具 基于java fx写的一款支持加载自定义poc文件的、可扩展的的图形化渗透测试框架。支持批量漏洞扫描、漏洞利用、结果导出等功能。 使用 经过测试,项目可在jdk8环境下正常使用。jdk11因为缺少一些必要的组件,所以jdk11版本工…...
无法访问云服务器上部署的Docker容器(二)
说明:记录一次使用公网IP 接口地址无法访问阿里云服务接口的问题; 描述 最近,我使用Docker部署了jeecg-boot项目,部署过程都没有问题,也没有错误信息。部署完成后,通过下面的地址访问后端Swagger接口文档…...
在Pycharm中运行Django项目如何指定运行的端口
方法步骤: 打开 PyCharm,选择你的 Django 项目。在菜单栏中,选择 “Run” -> “Edit Configurations...”。在打开的 “Run/Debug Configurations” 对话框中,选择你的 Django server 配置(如果没有,你…...
Android将 ViewBinding封装到BaseActivity基类中(Java版)
在Android中使用Java语言将ViewBinding封装到基类中,操作步骤如下: 1、在项目的build.gradle文件中启用了ViewBinding,添加以下代码: android {...buildFeatures {viewBinding true} } 2、创建一个名为“BaseActivity”的基类&…...
JSP实现数据传递与保存(一)
一、Web开发步骤 1.1两类模式 后端——————前端 先有前端,前端用的时候直接调用 后端已实现注册接口,接口名为doRegister.jsp 前端此时: 前端的form表单中的action提交地址就只能填doRegister.jsp,即: <f…...
【论文笔记之 YIN】YIN, a fundamental frequency estimator for speech and music
本文对 Alain de Cheveigne 等人于 2002 年在 The Journal of the Acoustical Society of America 上发表的论文进行简单地翻译。如有表述不当之处欢迎批评指正。欢迎任何形式的转载,但请务必注明出处。 论文链接:http://audition.ens.fr/adc/pdf/2002_…...
水印相机小程序源码
水印相机前端源码,本程序无需后端,前端直接导入即可,没有添加流量主功能,大家开通后自行添加 源码搜索:源码软件库 注意小程序后台的隐私权限设置,前端需要授权才可使用 真实时间地址拍照记录,…...
NXP实战笔记(八):S32K3xx基于RTD-SDK在S32DS上配置LCU实现ABZ解码
目录 1、概述 2、SDK配置 2.1、IO配置 2.2、TRGMUX配置 2.3、LCU配置 2.4、Trgmux配置 2.5、Emios配置 2.6、代码实现 1、概述 碰到光电编码器、磁编码器等,有时候传出来的位置信息为ABZ的方式,在S32K3里面通过TRGMUX、LCU、Emios结合的方式可以实现ABZ解码。 官方…...
【深度好文】simhash文本去重流程
对于类似于头条客户端而言,推荐的每一刷的新闻都必须是不同的新闻,这就需要对新闻文本进行排重。传统的去重一般是对文章的url链接进行排重,但是对于抓取的网页来说,各大平台的新闻可能存在重复,对于只通过文章url进行排重是不靠谱的,为了解决这个痛点于是就提出了用simh…...
主流的开发语言和开发环境介绍
个人浅见,不喜勿喷,谢谢 软件开发是一个涉及多个方面的复杂过程,其中包括选择合适的编程语言和开发环境。编程语言是软件开发的核心,它定义了程序员用来编写指令的语法和规则。而开发环境则提供了编写、测试和调试代码的工具和平台…...
List去重有几种方式
目录 1、for循环添加去重 2、for 双循环去重 3、for 双循环重复坐标去重 4、Set去重 5、stream流去重 1、for循环添加去重 List<String> oldList new ArrayList<>();oldList.add("张三");oldList.add("张三");oldList.add("李四&q…...
使用C#+NPOI进行Excel处理,实现多个Excel文件的求和统计
一个简易的控制台程序,使用C#NPOI进行Excel处理,实现多个Excel文件的求和统计。 前提: 待统计的Excel格式相同统计结果表与待统计的表格格式一致 引入如下四个动态库: 1. NPOI.dll 2. NPOI.OOXML.dll 3. NPOI.OpenXml4Net.dll …...
华清远见嵌入式学习——驱动开发——day9
目录 作业要求: 作业答案: 代码效果: 编辑 Platform总线驱动代码: 应用程序代码: 设备树配置: 作业要求: 通过platform总线驱动框架编写LED灯的驱动,编写应用程序测试&…...
formality:set_constant应用
我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 往期文章链接: formality:形式验证流程 scan mode func的功能检查需要把scan mode设置成0。...
sqllabs的order by注入
当我们在打开sqli-labs的46关发现其实是个表格,当测试sort等于123时,会根据列数的不同来进行排序 我们需要利用这个点来判断是否存在注入漏洞,通过加入asc 和desc判断页面有注入点 1、基于使用if语句盲注 如果我们配合if函数,表达…...
《The Art of InnoDB》第二部分|第4章:深入结构-磁盘结构-redo log
4.3 redo log 目录 4.3 redo log 4.3.1 redo log 介绍 4.3.2 redo log 的作用 4.3.3 redo log file 结构 4.3.4 redo log 提交逻辑 4.3.5 redo log 持久化逻辑 4.3.6 redo log 检查点 4.3.7 小结...
大模型安全相关论文
LLM对于安全的优势 “Generating secure hardware using chatgpt resistant to cwes,” Cryptology ePrint Archive, Paper 2023/212, 2023评估了ChatGPT平台上代码生成过程的安全性,特别是在硬件领域。探索了设计者可以采用的策略,使ChatGPT能够提供安…...
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测
回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测 目录 回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测预测效果基本描述程序设计参考资料 预测效果…...
[算法沉淀记录] 排序算法 —— 堆排序
排序算法 —— 堆排序 算法基础介绍 堆排序(Heap Sort)是一种基于比较的排序算法,它利用堆这种数据结构来实现排序。堆是一种特殊的完全二叉树,其中每个节点的值都必须大于或等于(最大堆)或小于或等于&am…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
