当前位置: 首页 > news >正文

13_pinctrl子系统

总结

pinctrl作为驱动
iomuxc节点在设备树里面 存储全部所需的引脚配置信息

iomux节点匹配pinctrl子系统

控制硬件外设的时候 要知道有哪些gpio 再看gpio有哪些服用寄存器
接着在程序配置gpio相关寄存器 这样搞效率很低
所以用iomux节点保存所有的引脚组 pinctrl驱动起来的时候获得所有引脚信息 保存在内存

pinctrl子系统预先确定引脚的数量和名字

  • 为每个引脚的配置信息分配内存
  • pinctrl子系统统一管理每个引脚的使用状态
    -iomux节点存放了各种引脚属性,pinctrl驱动解析iomux节点,存放引脚信息进入内存

iomux节点里如何填写

//iomuxc节点
//imx6ull.dtsi
iomuxc: iomuxc@20e0000 {compatible = "fsl,imx6ul-iomuxc";reg = <0x20e0000 0x4000>;};
//继续扩展 引用iomux节点 **imx6ull-seeed-npi.dts**
&iomuxc {pinctrl-names = "default""init","sleep";  //选定引脚状态pinctrl-0 = <&pinctrl_uart1>;  //一个状态就是一组引脚,比如对应下面pinctrl-1 =<&xxx>;pinctrl-2 =<&yyy>;
...pinctrl_uart1: uart1grp {fsl,pins = <MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX 0x1b0b1MX6UL_PAD_UART1_RX_DATA__UART1_DCE_RX 0x1b0b1>;};...
}

上面 引脚里面的宏是什么意思

MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX
#define MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX 0x0084 0x0310 0x0000 0 0
< mux_reg conf_reg input_reg mux_mode input_val >0x0084    0x0310    0x0000     0x0      0x0

mux_reg:引脚复用设置寄存器 基地址+mux_reg 就是 PIN 的复用寄存器地址。
conf_reg : 设置这个引脚的电气属性的寄存器地址 基地址+conf_reg =设置pin的电气属性地址
input_reg:引脚输入设置寄存器 有些外设有 input_reg 寄存器
引脚需要输入功能时设置
mux_mode:复用寄存器设置值
设置引脚复用
input_val:输入寄存器设置值
设置引脚输入特性

宏的最后跟随了一串数字 用来设置PIN的电气属性值 比如IO 的上/下拉、驱动能力和速度等
在这里插入图片描述
在这里插入图片描述

引脚状态初始化

在设备树里面节点 会变成plantform_dev 会执行probe进行匹配驱动
但是执行probe和drv配对之前 先回执行really_porbe() 这个函数和下面的引脚状态关系很大
用来初始化引脚值

//iomuxc节点
//imx6ull.dtsi
iomuxc: iomuxc@20e0000 {compatible = "fsl,imx6ul-iomuxc";reg = <0x20e0000 0x4000>;};
//继续扩展 引用iomux节点 **imx6ull-seeed-npi.dts**
&iomuxc {pinctrl-names = "default""init","sleep";  //选定引脚状态pinctrl-0 = <&pinctrl_uart1>;  //一个状态就是一组引脚,比如对应下面pinctrl-1 =<&xxx>;pinctrl-2 =<&yyy>;
...pinctrl_uart1: uart1grp {fsl,pins = <MX6UL_PAD_UART1_TX_DATA__UART1_DCE_TX 0x1b0b1MX6UL_PAD_UART1_RX_DATA__UART1_DCE_RX 0x1b0b1>;};...
}

还是用上一个设备树举例 看了下面的例子
就知道驱动的引脚其实在 probe之前就已经初始化好了电气属性了

drivers/base/dd.c
static int really_probe(struct device *dev, struct device_driver *drv)
{int ret = -EPROBE_DEFER;
...
re_probe:dev->driver = drv;ret = pinctrl_bind_pins(dev);  //这里根据iomux节点的 几个引脚状态来初始化引脚组
...if (dev->bus->probe) {ret = dev->bus->probe(dev);if (ret)goto probe_failed;} else if (drv->probe) {ret = drv->probe(dev); //这个是熟悉的probeif (ret)goto probe_failed;}...}
int pinctrl_bind_pins(struct device *dev)dev->pins->default_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_DEFAULT);//从设备节点状态找到指定状态//本次是default状态dev->pins->init_state = pinctrl_lookup_state(dev->pins->p,PINCTRL_STATE_INIT); /这次找init状态if (IS_ERR(dev->pins->init_state))pinctrl_select_state(dev->pins->p,dev->pins->default_state);//没有init状态变成default状态elseret = pinctrl_select_state(dev->pins->p, dev->pins->init_state);//有的话引脚变成init状态

相关文章:

13_pinctrl子系统

总结 pinctrl作为驱动 iomuxc节点在设备树里面 存储全部所需的引脚配置信息 iomux节点匹配pinctrl子系统 控制硬件外设的时候 要知道有哪些gpio 再看gpio有哪些服用寄存器 接着在程序配置gpio相关寄存器 这样搞效率很低 所以用iomux节点保存所有的引脚组 pinctrl驱动起来的时…...

Linux系统对于实施人员的价值

Linux系统对于实施人员的价值 随着互联网的发展&#xff0c;linux系统越来越突显了巨大的作用&#xff0c;很多互联网公司&#xff0c;政府企业&#xff0c;只要用到服务器的地方几乎都能看到linux系统的身影&#xff0c;可以说服务是不是在linux系统跑的代表了企业的技术水平&…...

ForkJoin 和 Stream并行流

还在用 for 循环计算两个数之间所有数的和吗&#xff1f;下面提供两种新方法&#xff01; 1. ForkJoin 1.1 背景 要知道&#xff0c;在一个方法中&#xff0c;如果没有做特殊的处理&#xff0c;那么在方法开始到结束使用的都是同一个线程&#xff0c;无论你的业务有多复杂 那…...

逻辑优化-cofactor

1. 简介 逻辑综合中的Cofactor优化方法是一种重要的逻辑优化技术。它通过提取逻辑电路中的共同部分&#xff0c;从而简化电路、减小面积和延迟。该方法广泛应用于电子设计自动化&#xff08;EDA&#xff09;领域中的逻辑综合、等价转换和优化等方面。 Cofactor优化方法最早由…...

车道线检测CondLaneNet论文和源码解读

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution Paper&#xff1a;https://arxiv.org/pdf/2105.05003.pdf code&#xff1a;GitHub - aliyun/conditional-lane-detection 论文解读&#xff1a; 一、摘要 这项工作作为车道线检测任…...

vue3的插槽slots

文章目录普通插槽Test.vueFancyButton.vue具名插槽Test.vueBaseLayout.vue作用域插槽默认插槽Test.vueBaseLayout.vue具名作用域插槽Test.vueBaseLayout.vue普通插槽 父组件使用子组件时&#xff0c;在子组件闭合标签中提供内容模板&#xff0c;插入到子组件定义的出口的地方 …...

docker学校服务器管理

docker 学校服务器管理使用docker&#xff0c;docker使用go语言编写。对于docker的理解&#xff0c;需要知道几个关键字docker, scp&#xff0c;images, container。 docker-码头工人scp-传输命令images/repository-镜像container-容器 docker是码头工人&#xff0c;scp相当…...

pv和pvc

一、PV和PVC详解当前&#xff0c;存储的方式和种类有很多&#xff0c;并且各种存储的参数也需要非常专业的技术人员才能够了解。在Kubernetes集群中&#xff0c;放了方便我们的使用和管理&#xff0c;Kubernetes提出了PV和PVC的概念&#xff0c;这样Kubernetes集群的管理人员就…...

k8s篇之Pod 干预与 PDB

文章目录自愿干预和非自愿干预PDBPDB 示例分离集群所有者和应用程序所有者角色如何在集群上执行中断操作自愿干预和非自愿干预 Pod 不会消失&#xff0c;除非有人&#xff08;用户或控制器&#xff09;将其销毁&#xff0c;或者出现了不可避免的硬件或软件系统错误。 我们把这…...

Django学习17 -- ManytoManyField

1. ManyToManyField &#xff08;参考&#xff1a;Django Documentation Release 4.1.4&#xff09; 类定义 class ManyToManyField(to, **options)使用说明 A many-to-many relationship. Requires a positional argument: the class to which the model is related, which w…...

既然有MySQL了,为什么还要有Redis?

目录专栏导读一、同样是缓存&#xff0c;用map不行吗&#xff1f;二、Redis为什么是单线程的&#xff1f;三、Redis真的是单线程的吗&#xff1f;四、Redis优缺点1、优点2、缺点五、Redis常见业务场景六、Redis常见数据类型1、String2、List3、Hash4、Set5、Zset6、BitMap7、Bi…...

RSTP基础要点(上)

RSTP基础RSTP引入背景STP所存在的问题RSTP对于STP的改进端口角色重新划分端口状态重新划分快速收敛机制&#xff1a;PA机制端口快速切换边缘端口的引入RSTP引入背景 STP协议虽然能够解决环路问题&#xff0c;但是由于网络拓扑收敛较慢&#xff0c;影响了用户通信质量&#xff…...

Linux操作系统学习(信号处理)

文章目录进程信号信号的产生方式&#xff08;信号产生前&#xff09;1. 硬件产生2.调用系统函数向进程发信号3.软件产生4.定位进程崩溃的代码&#xff08;进程异常退出产生信号&#xff09;信号保存的方式&#xff08;信号产生中&#xff09;获取pending表&&修改block表…...

CopyOnWriteArrayList 源码解读

一、CopyOnWriteArrayList 源码解读 在 JUC 中&#xff0c;对于 ArrayList 的线程安全用法&#xff0c;比较推崇于使用 CopyOnWriteArrayList &#xff0c;那 CopyOnWriteArrayList是怎么解决线程安全问题的呢&#xff0c;本文带领大家一起解读下 CopyOnWriteArrayList 的源码…...

方法

方法方法&#xff08;函数&#xff09;一、课前问答二、方法和函数三、方法的参数3.1 单个参数3.2 多个参数四、方法的返回值五、方法的多级调用六、递归方法&#xff08;函数&#xff09; 一、课前问答 1、break和continue的区别 2、嵌套循环的执行流程 3、二进制有哪些运算&…...

C/C++实现发送邮件功能(附源码)

C++常用功能源码系列 本文是C/C++常用功能代码封装专栏的导航贴。部分来源于实战项目中的部分功能提炼,希望能够达到你在自己的项目中拿来就用的效果,这样更好的服务于工作实践。 专栏介绍:专栏讲本人近10年后端开发常用的案例,以高质量的代码提取出来,并对其进行了介绍。…...

Java虚拟机JVM-运行时数据区域说明

及时编译器 HotSpot虚拟机中含有两个即时编译器&#xff0c;分别是编译耗时短但输出代码优化程度较低的客户端编译器&#xff08;简称为C1&#xff09;以及编译耗时长但输出代码优化质量也更高的服务端编译器&#xff08;简称为C2&#xff09;&#xff0c;通常它们会在分层编译…...

修复电子管

年前在咸鱼捡漏买到了10根1G4G电子管&#xff0c;这是一种直热三极管&#xff0c;非常的少见。买回来的时候所有的灯丝都是通的&#xff0c;卖家说都是新的&#xff0c;库存货&#xff0c;但是外观实在是太糟糕了&#xff0c;看着就像被埋在垃圾场埋了几十年的那种&#xff0c;…...

【Java】反射机制和代理机制

目录一、反射1. 反射概念2. 反射的应用场景3. 反射机制的优缺点4. 反射实战获取 Class 对象的四种方式二、代理机制1. 代理模式2. 静态代理3. 动态代理3.1 JDK动态代理机制1. 介绍2.JDK 动态代理类使用步骤3. 代码示例3.2 CGLIB 动态代理机制1.介绍2.CGLIB 动态代理类使用步骤3…...

synchronized底层

Monitor概念一、Java对象头二、Monitor2.1、Monitor—工作原理2.2、Monitor工作原理—字节码角度2.2、synchronized进阶原理&#xff08;优化&#xff09;2.3、synchronized优化原理——轻量级锁2.4、synchronized优化原理——锁膨胀2.5、synchronized优化原理——自旋优化2.6、…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...