当前位置: 首页 > news >正文

最简单的线性回归模型-标量

  首先考虑yyy为标量,www为标量的情况,那么我们的线性函数为y=wx+by=wx+by=wx+b。每批输入的量batch size 为111,每批输入的xxx为一个标量,设为x∗x^*x,标签yyy同样为一个标量,设为y∗y^*y。因此每批训练的损失函数LLL可以表示为:
L=(y−y∗)2=(wx∗+b−y∗)2\begin{aligned} L&=\left(y-y^*\right)^2\\ &=\left(wx^*+b-y^*\right)^2\\ \end{aligned} L=(yy)2=(wx+by)2
  每次训练完需要更新参数wwwbbb,我们采用梯度下降方法对这两个参数进行更新的话,需要求出两个参数的梯度,也就是需要求出∂L∂w\frac{\partial{L}}{\partial{w}}wL∂L∂b\frac{\partial{L}}{\partial{b}}bL,结果如下:
∂L∂w=2(wx∗+b−y∗)x∗\frac{\partial{L}}{\partial{w}}=2(wx^*+b-y^*)x^* wL=2(wx+by)x
∂L∂b=2(wx∗+b−y∗)\frac{\partial{L}}{\partial{b}}=2(wx^*+b-y^*) bL=2(wx+by)
训练之前需要对wwwbbb初始化赋值,设定步长stepstepstep。这样每轮wwwbbb的更新方法为:
wnew=w−step∗2(wx∗+b−y∗)x∗w_{new}=w-step*2(wx^*+b-y^*)x^*wnew=wstep2(wx+by)x
bnew=b−step∗2(wx∗+b−y∗)b_{new}=b-step*2(wx^*+b-y^*)bnew=bstep2(wx+by)
首先考虑yyy为标量,www为标量的情况,那么我们的线性函数为y=wx+by=wx+by=wx+b。每批输入的量batch size 为NNN,每批输入的xxx为一个向量,设为x∗\boldsymbol{x}^*x,标签yyy同样为一个向量,设为y∗\boldsymbol{y}^*y。因此损失函数可以表示为:
L=∑n=1N(y−y∗)2=∑n=1N(y−y∗)2\begin{aligned} L&=\sum_{n=1}^{N}\left(y-y^*\right)^2\\ &=\sum_{n=1}^{N}\left(y-y^*\right)^2\\ \end{aligned} L=n=1N(yy)2=n=1N(yy)2
下面我们对这种最简单的线性回归模型使用python实现一下:

x = np.array([0.1,1.2,2.1,3.8,4.1,5.4,6.2,7.1,8.2,9.3,10.4,11.2,12.3,13.8,14.9,15.5,16.2,17.1,18.5,19.2])
y = np.array([5.7,8.8,10.8,11.4,13.1,16.6,17.3,19.4,21.8,23.1,25.1,29.2,29.9,31.8,32.3,36.5,39.1,38.4,44.2,43.4])
print(x,y)
plt.scatter(x,y)
plt.show()

在这里插入图片描述
回归过程如下:

# 设定步长
step=0.001
# 存储每轮损失的loss数组
loss_list=[]
# 定义epoch
epoch=30
# 定义参数w和b并初始化
w=0.0
b=0.0
#梯度下降回归
for i in range(epoch) :#计算当前输入x和标签y的索引,由于x和y数组长度一致,因此通过i整除x的长度即可获得当前索引index = i % len(x)# 当前轮次的x值为:cx=x[index]# 当前轮次的y值为:cy=y[index]# 计算当前lossloss_list.append((w*cx+b-cy)**2)# 计算参数w和b的梯度grad_w = 2*(w*cx+b-cy)*cxgrad_b = 2*(w*cx+b-cy)# 更新w和b的值w -= step*grad_wb -= step*grad_b

输出loss如下:

plt.plot(loss_list)
plt.show()

在这里插入图片描述
输出拟合函数的结果:

print("y=%.2fx+%.2f" %(w,b))
y=2.46x+0.39

拟合的函数图像与训练数据中的点关系图如下:
在这里插入图片描述
可以看到迭代30次后的函数图像,现在迭代次数增加到3000,拟合结果如下:
在这里插入图片描述
loss如下:
在这里插入图片描述

在batchsize为1的时候,loss波动很大。因此有必要增大batchsize,下一篇我们在此基础上增加batchsize看看线性回归的结果。

相关文章:

最简单的线性回归模型-标量

首先考虑yyy为标量,www为标量的情况,那么我们的线性函数为ywxbywxbywxb。每批输入的量batch size 为111,每批输入的xxx为一个标量,设为x∗x^*x∗,标签yyy同样为一个标量,设为y∗y^*y∗。因此每批训练的损失…...

k8s-Kubernetes集群升级

文章目录前言一、集群升级1.部署cri-docker (所有集群节点)2.升级master节点3.升级worker节点前言 一、集群升级 https://v1-24.docs.kubernetes.io/zh-cn/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/ 1.部署cri-docker (所有…...

Linux25 -- 监听队列链接上限测试、命令uname、ulimit

一、监听队列链接上限测试 1、res listen(sockfd,5); //创建监听队列res listen(sockfd,5);不懂版本有不同的限制,2.6早期版本有限制为128,超过默认为128,可使用uname -a 查看版本 2、测试将链接数到达上限, 方法&#xff1…...

idea:地址被占用

问题启动idea报:java.net.BindException: Address already in use: bind,具体截图如下:解决步骤1、首先想到的是改idea端口,但按网上方法试下了几个4位数和5位数的端口,没啥作用2、根据idea抛异常的弹出框提示&#xf…...

JavaScript常用小技巧(js优化)

JavaScript常用小技巧(js优化)常见JS操作1、解构交换两数2、短路赋值3、if 判断优化4、 switch 判断优化6、动态正则匹配Number1、幂运算2、安全计算String1、反转字符串、判断是否回文数2、数组求和3、初始化二维数组Object1、对象遍历2、冻结对象3、解…...

【项目实战】MySQL 5.7中的关键字与保留字详解

一、什么是关键字和保留字 关键字是指在SQL中有意义的字。 某些关键字(例如SELECT,DELETE或BIGINT)是保留的,需要特殊处理才能用作表和列名称等标识符。 这一点对于内置函数的名称也适用。 二、如何使用关键字和保留字 非保留关…...

Git图解-常用命令操作

目录 一、前言 二、初始化仓库 三、添加文件 四、Git 流程全景图 五、Git工作流程 六、工作区和暂存区 七、查看文件状态 八、查看提交日志 九、查看差异 十、版本回退 十一、管理修改 十二、修改撤销 十三、删除文件 十四、分支管理 十五、项目分支操作 十六、…...

LeetCode096不同的二叉搜索树(相关话题:卡特兰数)

目录 题目描述 解题思路 代码实现 进出栈序列理解卡特兰数分析策略 相关知识 参考文章 题目描述 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: …...

软件测试7

一 CS和BS软件架构 CS:客户端-服务器端,BS:浏览器端-服务器端 区别总结: 1.效率:c/s效率高,某些内容已经安装在系统中了,b/s每次都要加载最新的数据 2.升级:b/s无缝升级&#xff0c…...

12 结构:如何系统设计框架的整体目录?

到现在,我们已经将 Gin 集成到框架 hade 中,同时又引入了服务容器和服务提供者,明确框架的核心思想是面向服务编程,一切皆服务,所有服务都是基于协议。后续也会以服务的形式,封装一个个的服务,让…...

假如你知道这样的MySQL性能优化

1. 为查询缓存优化你的查询 大多数的 MySQL 服务器都开启了查询缓存。这是提高性最有效的方法之 一,而且这是被 MySQL 的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同…...

79、ClimateNeRF: Physically-based Neural Rendering for Extreme Climate Synthesis

简介主页物理模拟可以很好地预测天气影响。神经辐射场产生SOTA场景模型。ClimateNeRF 允许我们渲染真实的天气效果,包括雾霾、雪和洪水 ,结果可以通过有物理意义的变量来控制,比如水位 ,这允许人们可视化气候变化的结果将对他们产…...

前端面试题(一)

目录 前言 一、css3实现布局的方式有哪些? 1.flex布局 2.grid布局 二、jquery的扩展机制? 三、jquery动画和css实现动画的本质区别? 四、不使用css的动画,如何实现盒子从左到右移动? 五、使用过的框架&#xf…...

Java基础常见面试题(七)

序列化和反序列化 Java序列化与反序列化是什么? Java序列化是指把Java对象转换为字节序列的过程,而Java反序列化是指把字节序列恢复为Java对象的过程。 序列化: 序列化是把对象转换成有序字节流,以便在网络上传输或者保存在本地…...

【springmvc】报文信息转换器

HttpMessageConverter HttpMessageConverter,报文信息转换器,将请求报文转换为Java对象,或将Java对象转换为响应报文 HttpMessageConverter提供了两个注解和两个类型: RequestBody, ResponseBody, Reques…...

3.5知识点复习

extern:表示声明。 没有内存空间。 不能提升。const:限定一个变量为只读变量。volatile:防止编译器优化代码。volatile int flg 0; register:定义一个寄存器变量。没有内存地址。register int a 10;字符串:C语言中&a…...

湖南中创教育PMP分享项目经理有哪些优势?

项目经理拥有超强的计划能力;具备大局意识;沟通能力特别强;具备更大的灵活性和反应能力以及总结汇报能力 1、超强的计划能力 项目经理几乎无时无刻都在做计划,因此也就更擅长做计划。 项目管理要抓重点,有主次地处理…...

LeetCode:27. 移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。 不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面…...

麻雀算法SSA优化LSTM长短期记忆网络实现分类算法

1、摘要 本文主要讲解:麻雀算法SSA优化LSTM长短期记忆网络实现分类算法 主要思路: 准备一份分类数据,数据介绍在第二章准备好麻雀算法SSA,要用随机数据跑起来用lstm把分类数据跑起来将lstm的超参数交给SSA去优化优化完的最优参数…...

哈希表题目:数组中的 k-diff 数对

文章目录题目标题和出处难度题目描述要求示例数据范围解法思路和算法代码复杂度分析题目 标题和出处 标题:数组中的 k-diff 数对 出处:532. 数组中的 k-diff 数对 难度 4 级 题目描述 要求 给定一个整数数组 nums\texttt{nums}nums 和一个整数 k…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...