当前位置: 首页 > news >正文

最简单的线性回归模型-标量

  首先考虑yyy为标量,www为标量的情况,那么我们的线性函数为y=wx+by=wx+by=wx+b。每批输入的量batch size 为111,每批输入的xxx为一个标量,设为x∗x^*x,标签yyy同样为一个标量,设为y∗y^*y。因此每批训练的损失函数LLL可以表示为:
L=(y−y∗)2=(wx∗+b−y∗)2\begin{aligned} L&=\left(y-y^*\right)^2\\ &=\left(wx^*+b-y^*\right)^2\\ \end{aligned} L=(yy)2=(wx+by)2
  每次训练完需要更新参数wwwbbb,我们采用梯度下降方法对这两个参数进行更新的话,需要求出两个参数的梯度,也就是需要求出∂L∂w\frac{\partial{L}}{\partial{w}}wL∂L∂b\frac{\partial{L}}{\partial{b}}bL,结果如下:
∂L∂w=2(wx∗+b−y∗)x∗\frac{\partial{L}}{\partial{w}}=2(wx^*+b-y^*)x^* wL=2(wx+by)x
∂L∂b=2(wx∗+b−y∗)\frac{\partial{L}}{\partial{b}}=2(wx^*+b-y^*) bL=2(wx+by)
训练之前需要对wwwbbb初始化赋值,设定步长stepstepstep。这样每轮wwwbbb的更新方法为:
wnew=w−step∗2(wx∗+b−y∗)x∗w_{new}=w-step*2(wx^*+b-y^*)x^*wnew=wstep2(wx+by)x
bnew=b−step∗2(wx∗+b−y∗)b_{new}=b-step*2(wx^*+b-y^*)bnew=bstep2(wx+by)
首先考虑yyy为标量,www为标量的情况,那么我们的线性函数为y=wx+by=wx+by=wx+b。每批输入的量batch size 为NNN,每批输入的xxx为一个向量,设为x∗\boldsymbol{x}^*x,标签yyy同样为一个向量,设为y∗\boldsymbol{y}^*y。因此损失函数可以表示为:
L=∑n=1N(y−y∗)2=∑n=1N(y−y∗)2\begin{aligned} L&=\sum_{n=1}^{N}\left(y-y^*\right)^2\\ &=\sum_{n=1}^{N}\left(y-y^*\right)^2\\ \end{aligned} L=n=1N(yy)2=n=1N(yy)2
下面我们对这种最简单的线性回归模型使用python实现一下:

x = np.array([0.1,1.2,2.1,3.8,4.1,5.4,6.2,7.1,8.2,9.3,10.4,11.2,12.3,13.8,14.9,15.5,16.2,17.1,18.5,19.2])
y = np.array([5.7,8.8,10.8,11.4,13.1,16.6,17.3,19.4,21.8,23.1,25.1,29.2,29.9,31.8,32.3,36.5,39.1,38.4,44.2,43.4])
print(x,y)
plt.scatter(x,y)
plt.show()

在这里插入图片描述
回归过程如下:

# 设定步长
step=0.001
# 存储每轮损失的loss数组
loss_list=[]
# 定义epoch
epoch=30
# 定义参数w和b并初始化
w=0.0
b=0.0
#梯度下降回归
for i in range(epoch) :#计算当前输入x和标签y的索引,由于x和y数组长度一致,因此通过i整除x的长度即可获得当前索引index = i % len(x)# 当前轮次的x值为:cx=x[index]# 当前轮次的y值为:cy=y[index]# 计算当前lossloss_list.append((w*cx+b-cy)**2)# 计算参数w和b的梯度grad_w = 2*(w*cx+b-cy)*cxgrad_b = 2*(w*cx+b-cy)# 更新w和b的值w -= step*grad_wb -= step*grad_b

输出loss如下:

plt.plot(loss_list)
plt.show()

在这里插入图片描述
输出拟合函数的结果:

print("y=%.2fx+%.2f" %(w,b))
y=2.46x+0.39

拟合的函数图像与训练数据中的点关系图如下:
在这里插入图片描述
可以看到迭代30次后的函数图像,现在迭代次数增加到3000,拟合结果如下:
在这里插入图片描述
loss如下:
在这里插入图片描述

在batchsize为1的时候,loss波动很大。因此有必要增大batchsize,下一篇我们在此基础上增加batchsize看看线性回归的结果。

相关文章:

最简单的线性回归模型-标量

首先考虑yyy为标量,www为标量的情况,那么我们的线性函数为ywxbywxbywxb。每批输入的量batch size 为111,每批输入的xxx为一个标量,设为x∗x^*x∗,标签yyy同样为一个标量,设为y∗y^*y∗。因此每批训练的损失…...

k8s-Kubernetes集群升级

文章目录前言一、集群升级1.部署cri-docker (所有集群节点)2.升级master节点3.升级worker节点前言 一、集群升级 https://v1-24.docs.kubernetes.io/zh-cn/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/ 1.部署cri-docker (所有…...

Linux25 -- 监听队列链接上限测试、命令uname、ulimit

一、监听队列链接上限测试 1、res listen(sockfd,5); //创建监听队列res listen(sockfd,5);不懂版本有不同的限制,2.6早期版本有限制为128,超过默认为128,可使用uname -a 查看版本 2、测试将链接数到达上限, 方法&#xff1…...

idea:地址被占用

问题启动idea报:java.net.BindException: Address already in use: bind,具体截图如下:解决步骤1、首先想到的是改idea端口,但按网上方法试下了几个4位数和5位数的端口,没啥作用2、根据idea抛异常的弹出框提示&#xf…...

JavaScript常用小技巧(js优化)

JavaScript常用小技巧(js优化)常见JS操作1、解构交换两数2、短路赋值3、if 判断优化4、 switch 判断优化6、动态正则匹配Number1、幂运算2、安全计算String1、反转字符串、判断是否回文数2、数组求和3、初始化二维数组Object1、对象遍历2、冻结对象3、解…...

【项目实战】MySQL 5.7中的关键字与保留字详解

一、什么是关键字和保留字 关键字是指在SQL中有意义的字。 某些关键字(例如SELECT,DELETE或BIGINT)是保留的,需要特殊处理才能用作表和列名称等标识符。 这一点对于内置函数的名称也适用。 二、如何使用关键字和保留字 非保留关…...

Git图解-常用命令操作

目录 一、前言 二、初始化仓库 三、添加文件 四、Git 流程全景图 五、Git工作流程 六、工作区和暂存区 七、查看文件状态 八、查看提交日志 九、查看差异 十、版本回退 十一、管理修改 十二、修改撤销 十三、删除文件 十四、分支管理 十五、项目分支操作 十六、…...

LeetCode096不同的二叉搜索树(相关话题:卡特兰数)

目录 题目描述 解题思路 代码实现 进出栈序列理解卡特兰数分析策略 相关知识 参考文章 题目描述 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: …...

软件测试7

一 CS和BS软件架构 CS:客户端-服务器端,BS:浏览器端-服务器端 区别总结: 1.效率:c/s效率高,某些内容已经安装在系统中了,b/s每次都要加载最新的数据 2.升级:b/s无缝升级&#xff0c…...

12 结构:如何系统设计框架的整体目录?

到现在,我们已经将 Gin 集成到框架 hade 中,同时又引入了服务容器和服务提供者,明确框架的核心思想是面向服务编程,一切皆服务,所有服务都是基于协议。后续也会以服务的形式,封装一个个的服务,让…...

假如你知道这样的MySQL性能优化

1. 为查询缓存优化你的查询 大多数的 MySQL 服务器都开启了查询缓存。这是提高性最有效的方法之 一,而且这是被 MySQL 的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同…...

79、ClimateNeRF: Physically-based Neural Rendering for Extreme Climate Synthesis

简介主页物理模拟可以很好地预测天气影响。神经辐射场产生SOTA场景模型。ClimateNeRF 允许我们渲染真实的天气效果,包括雾霾、雪和洪水 ,结果可以通过有物理意义的变量来控制,比如水位 ,这允许人们可视化气候变化的结果将对他们产…...

前端面试题(一)

目录 前言 一、css3实现布局的方式有哪些? 1.flex布局 2.grid布局 二、jquery的扩展机制? 三、jquery动画和css实现动画的本质区别? 四、不使用css的动画,如何实现盒子从左到右移动? 五、使用过的框架&#xf…...

Java基础常见面试题(七)

序列化和反序列化 Java序列化与反序列化是什么? Java序列化是指把Java对象转换为字节序列的过程,而Java反序列化是指把字节序列恢复为Java对象的过程。 序列化: 序列化是把对象转换成有序字节流,以便在网络上传输或者保存在本地…...

【springmvc】报文信息转换器

HttpMessageConverter HttpMessageConverter,报文信息转换器,将请求报文转换为Java对象,或将Java对象转换为响应报文 HttpMessageConverter提供了两个注解和两个类型: RequestBody, ResponseBody, Reques…...

3.5知识点复习

extern:表示声明。 没有内存空间。 不能提升。const:限定一个变量为只读变量。volatile:防止编译器优化代码。volatile int flg 0; register:定义一个寄存器变量。没有内存地址。register int a 10;字符串:C语言中&a…...

湖南中创教育PMP分享项目经理有哪些优势?

项目经理拥有超强的计划能力;具备大局意识;沟通能力特别强;具备更大的灵活性和反应能力以及总结汇报能力 1、超强的计划能力 项目经理几乎无时无刻都在做计划,因此也就更擅长做计划。 项目管理要抓重点,有主次地处理…...

LeetCode:27. 移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。 不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面…...

麻雀算法SSA优化LSTM长短期记忆网络实现分类算法

1、摘要 本文主要讲解:麻雀算法SSA优化LSTM长短期记忆网络实现分类算法 主要思路: 准备一份分类数据,数据介绍在第二章准备好麻雀算法SSA,要用随机数据跑起来用lstm把分类数据跑起来将lstm的超参数交给SSA去优化优化完的最优参数…...

哈希表题目:数组中的 k-diff 数对

文章目录题目标题和出处难度题目描述要求示例数据范围解法思路和算法代码复杂度分析题目 标题和出处 标题:数组中的 k-diff 数对 出处:532. 数组中的 k-diff 数对 难度 4 级 题目描述 要求 给定一个整数数组 nums\texttt{nums}nums 和一个整数 k…...

SAP ERP系统PP模块计划策略2050详解

SAP/ERP系统中面向订单生产的计划策略主要有20和50两个策略,这两个策略都是面向订单生产的计划策略,也是离散制造行业应用比较广泛的策略。它们之间最大差异就是在于20策略完全是由订单驱动,而50策略是预测加订单驱动,本文主要介绍…...

TIA博途中将硬件目录更改为中文的具体方法演示

TIA博途中将硬件目录更改为中文的具体方法演示 基本步骤可参考如下: 第一步: 第二步: 具体的操作演示: 如下图所示,在所示的目录中找到zh-chs文件夹,删除或修改文件夹的名称均可,这里建议大家修改文件夹的名称,防止以后需要恢复成英文目录, 如下...

【多线程操作】线程池模拟实现

目录 一.线程池的作用 二.线程池的模拟实现 1.线程模块(Thread.hpp): 2.线程锁模块(LockGuard.hpp): 3.任务模块(Task.hpp) 4.线程池核心(ThreadPool.hpp&#xff…...

HBase---Hbase安装(单机版)

Hbase安装单机版 文章目录Hbase安装单机版Master/Slave架构安装步骤配置Hbase1.上传压缩包解压更名修改hbase-env.sh修改hbase-site.xml配置HBase环境变量配置Zookeeper复制配置文件修改zoo.cfg配置文件修改myid配置Zookeeper环境变量刷信息配置文件启动hbase步骤hbase shellMa…...

启动项管理工具Autoruns使用实验(20)

实验目的 (1)了解注册表的相关知识; (2)了解程序在开机过程中的自启动; (3)掌握Autoruns在注册表和启动项方面的功能;预备知识 注册表是windows操作系统中的一个核心数据…...

BFD单臂回声实验详解

13.1.1BFD概念 BFD提供了一个通用的、标准化的、介质无关的、协议无关的快速故障检测机制,有以下两大优点: 对相邻转发引擎之间的通道提供轻负荷、快速故障检测。 用单一的机制对任何介质、任何协议层进行实时检测。 BFD是一个简单的“Hello”协议。两个系统之间建立BFD会…...

详解JAVA类加载器

目录 1.概述 2.双亲委派 3.ServiceClassLoader 4.URLClassLoader 5.加载冲突 1.概述 概念: 类加载器(Class Loader)是Java虚拟机(JVM)的一个重要组件,负责加载Java类到内存中并使其可以被JVM执行。类…...

记录一些常用C标准库函数,以及Linux系统调用函数的作用(不断更新)

C标准库函数 perror() 函数 作用:perror函数是C标准库中的一种函数,用于在STDERR(标准错误输出流)中输出给定的错误信息字符串。它不属于Linux系统调用函数。 具体使用方法:perror("调用的函数名") 所需…...

RK3568平台开发系列讲解(显示篇)DRM的atomic接口

🚀返回专栏总目录 文章目录 一、Property二、Standard Properties三、代码案例沉淀、分享、成长,让自己和他人都能有所收获!😄 📢目前DRM主要推荐使用的是 Atomic(原子的) 接口。 一、Property Property(属性)—– Atomic操作必须依赖的基本元素 Property把前面的…...

2022年MathorCup数学建模C题自动泊车问题解题全过程文档加程序

2022年第十二届MathorCup高校数学建模 C题 自动泊车问题 原题再现 自动泊车是自动驾驶技术中落地最多的场景之一,自动泊车指在停车场内实现汽车的自动泊车入位过程,在停车空间有限的大城市,是一个比较实用的功能,减少了驾驶员将…...

网站运营与维护是什么/b2b平台有哪几个

hikvision-control实现hikvision网络摄像机的登录、云台旋转控制、实时图片截取功能。库文件安装将src-dll文件夹中的文件拷贝到系统的库文件目录,主意文件名称不要进行修改。windows7,windows server目录如下:C:\Windows\System32当然你也可…...

网站费用计入什么科目/营销网站建设大概费用

ES6中引入了模板字符串(Template Literal),是创建字符串的一种新方法。有了这个新特性,我们就能更好地控制动态字符串。这将告别长串连接字符串的日子。要创建一个模板字符串,我们可以使用反引号(撇号)字符替找单引号或"。这将产生一个新…...

wordpress全功能主题/邮件营销

点击写配置按钮,直接把编辑框1的内容读取出来,然后加密数据,写到配置项里面,我选择的是DES加密。 读配置是读取配置文件,解密数据,写内容到编辑框1,但是这时解密失败了,在网上百度了…...

天津建设监理协会网站/北京做网络优化的公司

(图中显示图片的 Item 是在Header、Foot View中的) 最近有一个需求, 需要在ListView 的 HeaderView中 添加多个View, 最后发现每个View中都有一条分割线。 效果如图中第一张图片! 本来以为只要设置android:headerDivi…...

餐饮类网站设计/微信群拉人的营销方法

工程直接通过“添加”“现有项(Existing Item)”,添加.h .cpp...

咸宁网站设计公司/seo网络营销推广公司深圳

alter any cluster 修改任意簇的权限alter any index 修改任意索引的权限alter any role 修改任意角色的权限alter any sequence 修改任意序列的权限alter any snapshot 修改任意快照的权限alter any table 修改任意表的权限alter any trigger 修改任意触发器的权限alter clust…...