当前位置: 首页 > news >正文

MATLAB:优化与规划问题

一、线性规划

 

% 线性规划(Linear programming, 简称LP)
fcoff = -[75 120 90 105]; % 目标函数系数向量
A = [9 4 7 54 5 6 105 10 8 53 8 9 77 6 4 8]; % 约束不等式系数矩阵
b = [3600 2900 3000 2800 2200]'; % 约束不等式右端向量
Aeq = []; % 约束等式系数矩阵
beq = []; % 约束等式右端向量
lb = 50*ones(4,1); % 决策变量下限
ub = []; % 决策变量上限
options = optimoptions('linprog','Algorithm','dual-simplex','Display','iter'); % dual-simplex单纯性法
[x,fval,exitflag,output,lambda] = linprog(fcoff,A,b,Aeq,beq,lb,ub,options)
fval = - fval

 

fcoff = [2 1 3 2 1 3 4 1 3 2 1 3 2 1 1 2 1 3 2 2]'; % 按一列一列录入
A = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 00 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 00 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 00 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];
% A1 = repmat(eye(4),1,5)
b = [60 40 50 55]';
Aeq = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];
beq = [20 35 33 34 30]';
lb = zeros(20,1);
% options = optimoptions('linprog','Algorithm','interior-point'); % interior-point内点法
options = optimoptions('linprog','Algorithm','dual-simplex'); % dual-simplex单纯性法
[x,fval,exitflag,output,lamda] = linprog(fcoff,A,b,Aeq,beq,lb,[],options)
x = reshape(x,4,5)

二、二次规划

H = [1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = [0; 0];
options = optimoptions('quadprog','Algorithm','interior-point-convex','Display','iter');
[x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb,[],[],options) % 若不加options,则可以省略x0

 三、混合整数(非)线性规划

intcon: int condition

决策变量0-1问题:

fcoff = [-10 -11 -8 -12 -15 -12 -5];
intcon = 1:7;
A = [103 140 95 150 193 160 80; 1 1 1 0 0 0 0; 0 0 0 -1 -1 0 0; 0 0 0 0 0 -1 -1];
b = [650;2;-1;-1];
Aeq = [];
beq = [];
lb = zeros(7,1); 
ub = ones(7,1); 
[x,fval,exitflag] = intlinprog(fcoff,intcon,A,b,Aeq,beq,lb,ub)
maxf = -fval

function [x,fval,exitflag] = intlinprog_ex2()designate_data = xlsread('designate.xlsx',1,'B2:H8');fcoff = designate_data(:); % 目标函数系数向量intcon = 1:49;A = [];b = [];Aeq1 = zeros(7,49);for i = 1:7Aeq1(i,(i-1)*7+1:i*7) = 1; % 起点1 8 15 22...,终点7 14 21 28...endAeq2 = repmat(eye(7),1,7);Aeq = [Aeq1;Aeq2];beq = ones(14,1);lb = zeros(49,1);ub = ones(49,1);[x,fval,exitflag] = intlinprog(fcoff,intcon,A,b,Aeq,beq,lb,ub);x = reshape(x,7,7);
end

function [C,Ceq] = stBNB_fun1(x)Ceq = []; % 非线性约束等式% C表示非线性约束不等式C = [x(1)^2 + x(2)^2 + x(3)^2 + x(4)^2 + x(1) - x(2) + x(3) - x(4) - 8;x(1)^2 + 2*x(2)^2 + x(3)^2 + 2*x(4)^2 - x(1) - x(4) - 10;2*x(1)^2 + x(2)^2 + x(3)^2 + 2*x(4)^2 - x(2) - x(4) - 5];
end
objfun = @(x)x(1)^2+x(2)^2+2*x(3)^2+x(4)^2-5*x(1)-5*x(2)-21*x(3)+7*x(4);
x0 = zeros(4,1); % 初值
xstat = ones(4,1); % 都是整数
[errmsg,objval,objX,t,c,fail] = BNB20_new(objfun,x0,xstat,[],[],[],[],[],[],@stBNB_fun1)

objfun = @(x)5*x(4)+6*x(5)+8*x(6)+10*x(1)-7*x(3) - 18*log(x(2)+1)-19.2*log(x(1)-x(2)+1)+10;
x0 = zeros(6,1);
xstat = [0 0 0 1 1 1]';
lb = [0 0 0 0 0 0]';
ub = [2 2 1 1 1 1]';
A = [-1 1 0 0 0 0;0 1 0 -2 0 0;1 -1 0 0 -2 0;0 0 0 1 1 0];
b = [0 0 0 1]';
Aeq = [];
beq = [];
[errmsg,objval,objX,t,c,fail] = BNB20_new(objfun,x0,xstat,lb,ub,A,b,Aeq,beq,@stBNB_fun2)

四、有约束非线性规划

nonlcon: nonlinear condition 

x0 = [-1;0.5];
Aeq = [1,2];
beq = [0];
options = optimoptions('fmincon','Display','iter','Algorithm','interior-point');
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(@objfmincon_1,x0,[],[],Aeq,beq,[],[],@nlincon_fun1,options)

d = [640,850,530,72]; % 目标距离
Ao = (d/2 + d/4 + 200); %飞机携带A炸弹分别摧毁4个目标所需要的油量
Bo = (d/3 + d/4 + 200); %飞机携带B炸弹分别摧毁4个目标所需要的油量
D = [Ao;Bo]; 
D = D(:)'; % 第一个约束条件的系数行向量
objfun = @(x)(1-0.65)^x(1)*(1-0.76)^x(2)*(1-0.50)^x(3)*(1-0.70)^x(4)*...(1-0.56)^x(5)*(1-0.72)^x(6)*(1-0.68)^x(7)*(1-0.66)^x(8);
x0 = zeros(8,1);
A = [D;1 0 1 0 1 0 1 0;0 1 0 1 0 1 0 1;1 1 0 0 0 0 0 0; 0 0 1 1 0 0 0 0;0 0 0 0 1 1 0 0;0 0 0 0 0 0 1 1;-1 -1 0 0 0 0 0 0; 0 0 -1 -1 0 0 0 0;0 0 0 0 -1 -1 0 0;0 0 0 0 0 0 -1 -1];
b = [2700;4;4;2;2;2;2;-1;-1;-1;-1];
Aeq = [];
beq = [];
lb = zeros(8,1);
ub = [];
nonlcon = [];
options = optimoptions('fmincon','Algorithm','interior-point');
[x,fval,exitflag,output,lambda,grad] = fmincon(objfun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
x = reshape(x,2,4)
p = 1 - fval

x = [2:0.5:6];
y = [4.1 3.8 3.4 3.2 2.9 2.8 2.5 2.2 2.0];
plot(x,y,'r-*')
grid on
title('售价与预期销售量散点图')
xlabel('售价')
ylabel('预期销售量')
% y = a*x + b
py = polyfit(x,y,1)z = [0:7];
k = [1 1.4 1.7 1.85 1.95 2 1.95 1.8];
figure
plot(z,k,'b-*')
grid on
title('广告费与销售增长因子散点图')
xlabel('广告费')
ylabel('销售增长因子')
% k = c*z^2 + d*z + e
pk = polyfit(z,k,2)

% x(1)-->x, x(2)-->z
objf = @(x)-((py(1)*x(1)+py(2))*(pk(1)*x(2)^2+pk(2)*x(2)+pk(3))*(x(1)-2)-x(2));
lb = [2;0];
x0 = [3;2];
options = optimoptions('fmincon','Algorithm','interior-point');
[x,fval,exitflag,output,lambda,grad] = fmincon(objf,x0,[],[],[],[],lb,[],[],options)

五、半无限多元函数约束问题

fseminf

六、多目标规划问题

 

mobjf = @(x)[[36.9,35.8,24.9,29.9,45.8]*x;[-1,-1,-1,-1,-1]*x]; % 两个目标函数
x0 = ones(5,1);
goal = [1850,-55];
weight = [0.8,0.2];
A = [-1 -1 0 0 00 0 0 -1 -1];
b = [-23;-20];
Aeq = [];
beq = [];
lb = 8*ones(5,1);
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(mobjf,x0,goal,weight,A,b,Aeq,beq,lb)
% attainfactor为达到因子,以实数形式返回。attainfactor 包含解处的 γ 值。
% 如果 attainfactor 为负,则目标过达到
% 如果 attainfactor 为正,则目标欠达到

mobjf = @(x)[-[70 120]*x;-[400 600]*x;[3 2]*x];
x0 = ones(2,1);
goal = [-3900,-20000,80]; 
weight = [0.3 0.3 0.4]; 
A = [9 4;4 5;3 10];
b = [240;200;300];
lb = [8;8];
[x,fval,attainfactor,exitflag] = fgoalattain(mobjf,x0,goal,weight,A,b,[],[],lb)

plan = xlsread('planning.xlsx',1,'B2:M5');
invest = plan(1,:); % 投资
profit = plan(2,:); % 利润
waste = plan(3,:); % 废物
labour = plan(4,:); % 劳动力
mobjf = @(x)-[profit*x;labour*x]; % 目标函数,最大值转化为最小值
x0 = zeros(12,1); % 初值选择
lb = zeros(12,1); % 决策变量下限
ub = ones(12,1); % 决策变量上限
goal = -[sum(profit);sum(labour)]; %目标
% goal = -[20.74;14.86]; % 通过线性规划求解在满足约束条件下的目标值
weight = abs(goal); % 权重
A = [invest;waste]; % 线性约束不等式系数矩阵
b = [80;20]; % 线性约束不等式右端向量
options = optimoptions('fgoalattain','Display','iter','MaxIterations',100,'ConstraintTolerance',1e-8);
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(mobjf,x0,goal,weight,A,b,[],[],lb,ub,[],options)

 七、极小化极大问题

nonlcon: 定义非线性等式和不等式 

% Minimax一般是寻找一个局部最优解而不是全局最优解
lb = [5;5];
ub = [8;8];
x0 = [1;1];
[x,fval,maxfval,exitflag,output] = fminimax(@fminimax_fun1,x0,[],[],[],[],lb,ub)

objf = @(x)sqrt([(x(1)-1.5)^2+(x(2)-6.8)^2;(x(1)-6.0)^2+(x(2)-7.0)^2; (x(1)-8.9)^2+(x(2)-6.9)^2;(x(1)-3.5)^2+(x(2)-4.0)^2; (x(1)-7.4)^2+(x(2)-3.1)^2]); 
x0 = [0;0];
Aeq = [1 -1];
beq = [2.5];
[x,fval,maxfval,exitflag,output] = fminimax(objf,x0,[],[],Aeq,beq)

 八、线性约束最小二乘问题

lsqlin: Solve constrained linear least-squares problems. 

C = [0.9501 0.7620 0.6153 0.40570.2311 0.4564 0.7919 0.93540.6068 0.0185 0.9218 0.91690.4859 0.8214 0.7382 0.41020.8912 0.4447 0.1762 0.8936];
d = [0.0578 0.3528 0.8131 0.0098 0.1388]';
A = [0.2027 0.2721 0.7467 0.46590.1987 0.1988 0.4450 0.41860.6037 0.0152 0.9318 0.8462];
b = [0.5251 0.2026 0.6721]';
Aeq = [3 5 7 9];
beq = 4;
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);
x0 = rand(4,1);
options = optimoptions('lsqlin','Algorithm','interior-point','Display','iter');
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)

九、动态规划 

dynprog

十、智能优化算法

1、遗传算法

nonlcon: 定义非线性等式与不等式  

fh = @(x)-(x.*sin(10*pi*x) + 2);
fplot(fh,[-1,2])
% fmincon
v = [];
xi = [-1:0.8:1.5,1.5:0.1:2];
for x0 = xisolx = fmincon(fh,x0,[],[],[],[],-1,2);v = [v;x0,solx,-fh(solx)];
end

options = optimoptions('ga','Display','iter');
[x,fval] = ga(fh,1,[],[],[],[],-1,2,[],options)

fmin = @(x)5*x(4)+6*x(5)+8*x(6)+10*x(1)-7*x(3)-18*log(x(2)+1)-19.2*log(x(1)-x(2)+1)+10;
nvars = 6; % 决策变量的个数
intcon = [4,5,6]; % 取整决策变量下标
ub = [2 2 1 1 1 1]';
lb = [0 0 0 0 0 0]';
A = [-1 1 0 0 0 0;0 1 0 -2 0 0;1 -1 0 0 -2 0;0 0 0 1 1 0];
b = [0 0 0 1]';
options = optimoptions('ga','Display','iter');
[x,fval] = ga(fmin,nvars,A,b,[],[],lb,ub,@gacon_fun1,intcon,options)
% 使用三中的BNB20_new函数
objfun = @(x)5*x(4)+6*x(5)+8*x(6)+10*x(1)-7*x(3)-18*log(x(2)+1)-19.2*log(x(1)-x(2)+1)+10;
x0 = zeros(6,1); % 初值
xstat = [0 0 0 1 1 1]'; % 都不是整数
xlb = [0 0 0 0 0 0]';
xub = [2 2 1 1 1 1]';
A = [-1 1 0 0 0 0;0 1 0 -2 0 0;1 -1 0 0 -2 0;0 0 0 1 1 0];
b = [0 0 0 1]';
Aeq = [];
beq = [];
[errmsg,objval,objX,t,c,fail] = BNB20_new(objfun,x0,xstat,xlb,xub,A,b,Aeq,beq,@gacon_fun1)

 2、粒子群算法

fh = @(x)-x.*sin(10*pi*x) - 2;
[x,fval,exitflag,output] = particleswarm(fh,1,-1,2)

% fh = @(x,y)sin(3*x.*y)+(x-0.1).*(y-1)+x.^2+y.^2;
% fsurf(fh,[-1,3,-3,3])
fh = @(x)sin(3*x(1).*x(2))+(x(1)-0.1).*(x(2)-1)+x(1).^2+x(2).^2;
[x,fval,exitflag,output] = particleswarm(fh,2,[-1;-3],[3;3])

3、模拟退火算法

% 测试函数函数dejong5fcn
[x,fval] = simulannealbnd(@dejong5fcn,rand(1,2))

% fh = @(x,y)(20 + x^2 + y^2 - 10*(cos(2*pi*x) + cos(2*pi*y)));
% fsurf(fh)
fh = @(x)(20 + x(1).^2 + x(2).^2 - 10*(cos(2*pi*x(1)) + cos(2*pi*x(2))));
[x,fval,exitflag] = simulannealbnd(fh,rand(1,2))

相关文章:

MATLAB:优化与规划问题

一、线性规划 % 线性规划(Linear programming, 简称LP) fcoff -[75 120 90 105]; % 目标函数系数向量 A [9 4 7 54 5 6 105 10 8 53 8 9 77 6 4 8]; % 约束不等式系数矩阵 b [3600 2900 3000 2800 2200]; % 约束不等式右端向量 Aeq []; % 约束等式系…...

Oracal执行计划解析

概述 | Id | Operation | Name | Rows | Bytes | TempSpc | Cost (%CPU) | Time | ----------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1…...

对form表单对象中数组中的字段进行校验的方法

当对form表单中&#xff0c;数组readings中的字段进行校验时&#xff0c;prop和rules绑定要写成动态的&#xff0c;如下代码 <div v-for"(item,index) in form.readings"><el-form-item label"上次读数" > <!--prop"scds"-->…...

一、JAVA集成海康SDK

JAVA集成海康SDK 文章目录 JAVA集成海康SDK前言一、项目依赖 jar1. examples.jar2. 项目依赖 jna.jar,可以通过 maven依赖到。二、集成SDK1.HcNetSdkUtil 海康 SDK封装类2.HCNetSDK3.Linux系统集成SDK三、总结前言 提示:首先去海康官网下载 https://open.hikvision.com/dow…...

PAT 乙级 1031 查验身份证 c语言实现

一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下&#xff1a; 首先对前17位数字加权求和&#xff0c;权重分配为&#xff1a;{7&#xff0c;9&#xff0c;10&#xff0c;5&#xff0c;8&#xff0c;4&#xff0c;2&#xff0c;1&am…...

LeetCode 345. 反转字符串中的元音字母

给你一个字符串 s &#xff0c;仅反转字符串中的所有元音字母&#xff0c;并返回结果字符串。 元音字母包括 ‘a’、‘e’、‘i’、‘o’、‘u’&#xff0c;且可能以大小写两种形式出现不止一次。 示例 1&#xff1a; 输入&#xff1a;s “hello” 输出&#xff1a;“holl…...

go中函数与方法的区别与go中关于面向对象理解

声明方法的区别 函数是一段可以独立调用的代码块&#xff0c;它可以有参数和返回值。函数的声明不依赖于任何类型&#xff0c;可以直接通过函数名进行调用。 函数的声明格式如下&#xff1a; func functionName(parameters) returnType {// 函数体 }示例&#xff1a; func A…...

SQL Server 实验二:数据库视图的创建和使用

目录 第一关 相关知识 什么是表 操作数据表 创建数据表 插入数据 修改表结构 删除数据表 编程要求 第一关实验代码&#xff1a; 第二关 相关知识 视图是什么 视图的优缺点 视图的优点 视图的缺点 操作视图 创建视图 通过视图向基本表中插入数据 通过视图修改基本表的…...

树结构导入

Testpublic void testExcel1() {// 写法1&#xff1a;JDK8 ,不用额外写一个DemoDataListener// since: 3.0.0-beta1EasyExcelFactory.read(new File("C:\\Users\\Admin\\Desktop\\树导入.xlsx"), null, new ReadListener<Map>() {public static final int BATC…...

Promise封装ajax

Promise封装原生ajax 1.node的内置模块url, http 2.Promise封装原生ajax 01-node的内置模块 # url: 操作网址 let url require(url) url.parse(网址, [布尔值: 决定是否将查询字符串转换为对象格式])&#xff1a; 将网址解析成对象# http: 创建本地服务器 let http requi…...

47 vue 常见的几种模型视图不同步的问题

前言 这里主要是来看一下 关于 vue 中的一些场景下面 可能会出现 模型和视图 不同步更新的情况 然后 这种情况主要是 vue 中的对象 属性没有响应式的 setter, getter 然后 我们这里就来看一下 大多数的情况下的一个场景, 和一些处理方式 当然 处理方式主要是基于 Vue.set, …...

以太网/USB 数据采集卡 24位16通道 labview 256K同步采样

XM7016以太网SUB数据采集卡 XM7016是一款以太网/USB高速数据采集卡&#xff0c;具有16通道真差分输入&#xff0c;24位分辨率&#xff0c;单通道最高采样率256ksps. 16通道同步共计4.096Msps、精密前置增益放大、集成IEPE/ICP硬件支持的特点。本产品采用了多个高精度24位ADC单元…...

python基础 | 核心库:PIL

1、读取图像信息 查看图像信息 读取同一文件夹下的文件 可加 ./可不加 rom PIL import Image img Image.open(image.jpg) # 打开图像文件(注意:是去掉文件头的纯数据) print(img.format) # 图像格式(如BMP PNG JPEG 等) print(img.size) # 图像大小(…...

#Linux系统编程(共享内存)

&#xff08;一&#xff09;发行版&#xff1a;Ubuntu16.04.7 &#xff08;二&#xff09;记录&#xff1a; &#xff08;1&#xff09;什么是共享内存 共享内存是System V版本的最后一个进程间通信方式。共享内存&#xff0c;顾名思义就是允许两个不相关的进程访问同一个逻辑…...

蓝桥杯备考随手记: practise01

问题描述: 小明对数位中含有 2、0、1、9 的数字很感兴趣&#xff0c;在 1 到 40 中这样的数包 括 1、2、9、10 至 32、39 和 40&#xff0c;共 28 个&#xff0c;他们的和是 574。 请问&#xff0c;在 1 到 2019 中&#xff0c;所有这样的数的和是多少&#xff1f; 思路分析…...

【openGL4.x手册09】转换反馈

目录 一、说明二、着色器设置2.2 捕获的数据格式2.2 高级交错2.3 双精度和对齐2.4 In-shader规范 三、缓冲区绑定四、反馈过程五、反馈对象5.1 反馈暂停和恢复5.2 绑定暂停的反馈对象。 六、反馈渲染七、局限性 一、说明 转换反馈是捕获由顶点处理步骤生成的基元的过程&#xf…...

记录一次报错提示npx update-browserslist-db@latest

1&#xff0c;定位文件夹位置 找到HBuilderX的安装目录, cmd切换到HBuilderX/plugins/uniapp-cli下 删除node_modules以及package-lock.json 在当前目录执行npm install 重新打开HBuilderX运行 2&#xff0c; 删除后&#xff0c;再次通过hbuilderX启动微信小程序&#xff0c;会…...

【Go】二、Go的基本数据类型

文章目录 0、进制1、变量的声明2、数据类型3、整型4、浮点型5、字符类型6、布尔类型7、字符串类型8、基本数据类型的默认值9、类型转换10、基本类型转String11、String转其他类型 0、进制 N进制&#xff0c;逢N进一 1、变量的声明 //声明 赋值 var age int 18//声明、赋值、…...

十一、Spring源码学习之registerListeners方法

registerListeners()方法 protected void registerListeners() {// Register statically specified listeners first.//获取容器中事件监听并存放到多播器中 applicationListenersfor (ApplicationListener<?> listener : getApplicationListeners()) {getApplicationE…...

Oracle 控制文件详解

1、控制文件存储的数据信息 1&#xff09;数据库名称和数据库唯一标识符&#xff08;DBID) 2&#xff09;创建数据库的时间戳 3&#xff09;有关数据文件、联机重做日志文件、归档重做日志文件的信息 4&#xff09;表空间信息 5&#xff09;检查点信息 6&#xff09;日志序列号…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...