当前位置: 首页 > news >正文

音频干扰检测(频域方法)

测试音响系统的通路上是否有外部干扰时,可以通过播放1000赫兹的正弦波信号,在输出端采集数字信号(I2S,TDD,A2B)并保存为.wav文件。 然后通过以下Python代码检测。

import numpy as np

import librosa

import matplotlib.pyplot as plt

def load_and_normalize_audio(audio_path, sr=48000, apply_window=True, channel=2):

    """channel参数指定要分析的声道,索引从0开始"""

    y, sr = librosa.load(audio_path, sr=sr, mono=False)

    # 确保选取多声道中的指定声道,如果是单声道信号,则直接使用

    if y.ndim > 1 and y.shape[0] > channel:

        y = y[channel, :]

    elif y.ndim > 1:

        print("Warning: Requested channel not found. Using first channel instead.")

        y = y[0, :]

    # 先归一化音频信号到[-1, 1]

    y = y / np.max(np.abs(y))

    # 应用窗函数

    if apply_window:

        window = np.hanning(len(y))

        y = y * window

    return y, sr

def find_interference(y, sr, target_freq, threshold_db=-80):

    """分析音频,找出除目标频率外的干扰信号"""

    # 计算FFT

    Y = np.fft.rfft(y)

    freqs = np.fft.rfftfreq(len(y), d=1/sr)

    # 计算幅度(dBFS)

    Y_amplitude = np.abs(Y) / len(Y)

    Y_dbfs = 20 * np.log10(np.maximum(Y_amplitude, 1e-12))

    # 将目标频率附近的幅度设置为非常低的数值来忽略目标频率

    target_idx = np.abs(freqs - target_freq).argmin()

    ignore_band = 10  # 忽略目标频率附近±10Hz范围

    Y_dbfs[target_idx-ignore_band:target_idx+ignore_band] = -np.inf

    # 寻找最大幅度的干扰频率

    max_idx = np.argmax(Y_dbfs)

    # 检查干扰是否高于阈值

    if Y_dbfs[max_idx] > threshold_db:

        print(f"检测到干扰频率:{freqs[max_idx]}Hz,幅度 {Y_dbfs[max_idx]}dB")

    else:

        print("未检测到显著干扰。")

def plot_spectrum(y, sr):

    """绘制频谱图"""

    Y = np.fft.rfft(y)

    freqs = np.fft.rfftfreq(len(y), d=1/sr)

    Y_amplitude = np.abs(Y) / len(Y)

    Y_dbfs = 20 * np.log10(np.maximum(Y_amplitude, 1e-12))

    plt.figure(figsize=(10, 6))

    plt.plot(freqs, Y_dbfs)

    plt.xlabel('Frequency (Hz)')

    plt.ylabel('Amplitude (dB)')

    plt.title('Frequency Spectrum')

    plt.ylim(-120, 0)

    plt.xlim(0, sr // 2)

    plt.show()

# 替换audio_path为你的音频文件路径

audio_path = 'sine.wav'

y, sr = load_and_normalize_audio(audio_path)

plot_spectrum(y, sr)

find_interference(y, sr, target_freq=1000)

以上代码由AI生成,本人调试完成,实测可用! :)

相关文章:

音频干扰检测(频域方法)

测试音响系统的通路上是否有外部干扰时,可以通过播放1000赫兹的正弦波信号,在输出端采集数字信号(I2S,TDD,A2B)并保存为.wav文件。 然后通过以下Python代码检测。 import numpy as np import librosa im…...

Rust引用借用 vs 原始指针

let v: i32 10; let v1 &v; let a: *const i32 &v; println!("a{:p}", a); let b a as *mut i32; //无法从&v直接转换成*mut i32,需要从*const i32过度 println!("b{:p}", b); unsafe {*b1; } println!("v{} v1{}"…...

抖音视频关键词无水印下载软件|手机网页视频批量提取工具

全新视频关键词无水印下载软件,助您快速获取所需视频! 随着时代的发展,视频内容已成为人们获取信息和娱乐的重要途径。为了方便用户获取所需视频,推出了一款功能强大的视频关键词无水印下载软件。该软件主要功能包括关键词批量提取…...

关于Devc++调试的问题以及解决STL变量无法查看

目前Devc的调试主要有以下几点: 1.调试不能直接查看stl变量,会卡死不动 2.目前单步进入只能用鼠标键按 3.若想按下一步进入函数体内,要在函数体内打上断点才行 4.调试到return 0 ;上一句就停了,不会结束程序 5.目前F2跳至断点…...

MATLAB:优化与规划问题

一、线性规划 % 线性规划(Linear programming, 简称LP) fcoff -[75 120 90 105]; % 目标函数系数向量 A [9 4 7 54 5 6 105 10 8 53 8 9 77 6 4 8]; % 约束不等式系数矩阵 b [3600 2900 3000 2800 2200]; % 约束不等式右端向量 Aeq []; % 约束等式系…...

Oracal执行计划解析

概述 | Id | Operation | Name | Rows | Bytes | TempSpc | Cost (%CPU) | Time | ----------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1…...

对form表单对象中数组中的字段进行校验的方法

当对form表单中&#xff0c;数组readings中的字段进行校验时&#xff0c;prop和rules绑定要写成动态的&#xff0c;如下代码 <div v-for"(item,index) in form.readings"><el-form-item label"上次读数" > <!--prop"scds"-->…...

一、JAVA集成海康SDK

JAVA集成海康SDK 文章目录 JAVA集成海康SDK前言一、项目依赖 jar1. examples.jar2. 项目依赖 jna.jar,可以通过 maven依赖到。二、集成SDK1.HcNetSdkUtil 海康 SDK封装类2.HCNetSDK3.Linux系统集成SDK三、总结前言 提示:首先去海康官网下载 https://open.hikvision.com/dow…...

PAT 乙级 1031 查验身份证 c语言实现

一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下&#xff1a; 首先对前17位数字加权求和&#xff0c;权重分配为&#xff1a;{7&#xff0c;9&#xff0c;10&#xff0c;5&#xff0c;8&#xff0c;4&#xff0c;2&#xff0c;1&am…...

LeetCode 345. 反转字符串中的元音字母

给你一个字符串 s &#xff0c;仅反转字符串中的所有元音字母&#xff0c;并返回结果字符串。 元音字母包括 ‘a’、‘e’、‘i’、‘o’、‘u’&#xff0c;且可能以大小写两种形式出现不止一次。 示例 1&#xff1a; 输入&#xff1a;s “hello” 输出&#xff1a;“holl…...

go中函数与方法的区别与go中关于面向对象理解

声明方法的区别 函数是一段可以独立调用的代码块&#xff0c;它可以有参数和返回值。函数的声明不依赖于任何类型&#xff0c;可以直接通过函数名进行调用。 函数的声明格式如下&#xff1a; func functionName(parameters) returnType {// 函数体 }示例&#xff1a; func A…...

SQL Server 实验二:数据库视图的创建和使用

目录 第一关 相关知识 什么是表 操作数据表 创建数据表 插入数据 修改表结构 删除数据表 编程要求 第一关实验代码&#xff1a; 第二关 相关知识 视图是什么 视图的优缺点 视图的优点 视图的缺点 操作视图 创建视图 通过视图向基本表中插入数据 通过视图修改基本表的…...

树结构导入

Testpublic void testExcel1() {// 写法1&#xff1a;JDK8 ,不用额外写一个DemoDataListener// since: 3.0.0-beta1EasyExcelFactory.read(new File("C:\\Users\\Admin\\Desktop\\树导入.xlsx"), null, new ReadListener<Map>() {public static final int BATC…...

Promise封装ajax

Promise封装原生ajax 1.node的内置模块url, http 2.Promise封装原生ajax 01-node的内置模块 # url: 操作网址 let url require(url) url.parse(网址, [布尔值: 决定是否将查询字符串转换为对象格式])&#xff1a; 将网址解析成对象# http: 创建本地服务器 let http requi…...

47 vue 常见的几种模型视图不同步的问题

前言 这里主要是来看一下 关于 vue 中的一些场景下面 可能会出现 模型和视图 不同步更新的情况 然后 这种情况主要是 vue 中的对象 属性没有响应式的 setter, getter 然后 我们这里就来看一下 大多数的情况下的一个场景, 和一些处理方式 当然 处理方式主要是基于 Vue.set, …...

以太网/USB 数据采集卡 24位16通道 labview 256K同步采样

XM7016以太网SUB数据采集卡 XM7016是一款以太网/USB高速数据采集卡&#xff0c;具有16通道真差分输入&#xff0c;24位分辨率&#xff0c;单通道最高采样率256ksps. 16通道同步共计4.096Msps、精密前置增益放大、集成IEPE/ICP硬件支持的特点。本产品采用了多个高精度24位ADC单元…...

python基础 | 核心库:PIL

1、读取图像信息 查看图像信息 读取同一文件夹下的文件 可加 ./可不加 rom PIL import Image img Image.open(image.jpg) # 打开图像文件(注意:是去掉文件头的纯数据) print(img.format) # 图像格式(如BMP PNG JPEG 等) print(img.size) # 图像大小(…...

#Linux系统编程(共享内存)

&#xff08;一&#xff09;发行版&#xff1a;Ubuntu16.04.7 &#xff08;二&#xff09;记录&#xff1a; &#xff08;1&#xff09;什么是共享内存 共享内存是System V版本的最后一个进程间通信方式。共享内存&#xff0c;顾名思义就是允许两个不相关的进程访问同一个逻辑…...

蓝桥杯备考随手记: practise01

问题描述: 小明对数位中含有 2、0、1、9 的数字很感兴趣&#xff0c;在 1 到 40 中这样的数包 括 1、2、9、10 至 32、39 和 40&#xff0c;共 28 个&#xff0c;他们的和是 574。 请问&#xff0c;在 1 到 2019 中&#xff0c;所有这样的数的和是多少&#xff1f; 思路分析…...

【openGL4.x手册09】转换反馈

目录 一、说明二、着色器设置2.2 捕获的数据格式2.2 高级交错2.3 双精度和对齐2.4 In-shader规范 三、缓冲区绑定四、反馈过程五、反馈对象5.1 反馈暂停和恢复5.2 绑定暂停的反馈对象。 六、反馈渲染七、局限性 一、说明 转换反馈是捕获由顶点处理步骤生成的基元的过程&#xf…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

React核心概念:State是什么?如何用useState管理组件自己的数据?

系列回顾&#xff1a; 在上一篇《React入门第一步》中&#xff0c;我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目&#xff0c;并修改了App.jsx组件&#xff0c;让页面显示出我们想要的文字。但是&#xff0c;那个页面是“死”的&#xff0c;它只是静态…...

EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势

一、WebRTC与智能硬件整合趋势​ 随着物联网和实时通信需求的爆发式增长&#xff0c;WebRTC作为开源实时通信技术&#xff0c;为浏览器与移动应用提供免插件的音视频通信能力&#xff0c;在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能&#xff0c;对实时…...