当前位置: 首页 > news >正文

【情感分析概述】

文章目录

  • 一、情感极性分析概述
    • 1. 定义
    • 2. 情感极性的类别
    • 3. 应用场景
  • 二、情感极性分析的技术方法
    • 1. 基于规则的方法
      • a. 关键词打分
      • b. 情感词典的使用
    • 2. 基于机器学习的方法
      • a. 监督学习方法
      • b. 深度学习方法
  • 三、Python进行情感极性分析

一、情感极性分析概述

情感极性分析(Sentiment Polarity Analysis)是自然语言处理技术的一部分,它关注于从文本数据中自动检测和分类情感的倾向性。这种分析能够帮助我们理解人们对于某个主题、产品或服务的感受是积极的、消极的还是中立的。

1. 定义

情感极性分析通过自然语言处理、文本分析和计算语言学方法,识别和提取文本中的主观信息。它通过分析词汇的使用和句子的结构,确定文本表达的情感是正面、负面还是中性。

2. 情感极性的类别

情感极性主要分为三大类:正面、负面和中性。

  • 正面情感:表达满意、喜悦、赞赏或其他积极态度的情绪。
  • 负面情感:表达不满、悲伤、批评或其他消极态度的情绪。
  • 中性情感:既不表达积极也不表达消极态度,可能是客观描述或不包含情感的信息。

3. 应用场景

  • 社交媒体监控:分析用户在社交媒体上的评论和帖子,了解公众对特定话题或品牌的情感倾向。
  • 市场研究:通过分析消费者评论和反馈,企业可以了解市场趋势,顾客满意度和产品改进的方向。
  • 政策分析与公共管理:政府机构可以利用情感分析监控民众对于政策变化的反应,优化公共服务和政策制定。
  • 金融市场分析:情感分析可以用来预测股市趋势,通过分析财经新闻和报告中的情绪变化来预测市场动向。

二、情感极性分析的技术方法

情感极性分析的技术可以大致分为两类:基于规则的方法和基于机器学习的方法。这两种方法各有特点,适用于不同的应用场景和数据集。

1. 基于规则的方法

基于规则的方法依靠预先定义的规则来分析文本中的情感。这些规则通常基于语言学知识,如词性、句子结构和特定的情感词汇。

a. 关键词打分

  • 工作原理:此方法通过为每个情感词分配正负分数来评估整个文本的情感倾向。文本的情感分数是所有情感词分数的总和,正分表示正面情绪,负分表示负面情绪。
  • 优点:实现简单,不需要训练数据。
  • 缺点:难以处理含义复杂的文本,如反讽、双关语等。
  • 适用场景:适用于语言相对简单且情感表达直接的文本分析。

b. 情感词典的使用

  • 工作原理:使用预先定义的情感词典(包含大量的情感词及其情感倾向性评分),通过匹配文本中的词汇来确定文本的情感极性。
  • 优点:能够较准确地识别和评估情感词汇。
  • 缺点:对于依赖上下文的情感表达效果不佳。
  • 适用场景:当文本中的情感表达主要通过情感词汇直接展现时较为有效。

2. 基于机器学习的方法

基于机器学习的方法通过训练模型来自动识别和分类文本的情感极性。这种方法可以处理更复杂的语言特征,适用于各种类型的文本数据。

a. 监督学习方法

  • 工作原理:使用带有情感标签的数据集来训练一个分类器,该分类器能够学习文本特征与情感极性之间的关系,从而对新的文本进行情感分类。
  • 优点:准确度较高,能够处理复杂的文本特征和隐含的情感表达。
  • 缺点:需要大量的标注数据进行训练。
  • 适用场景:当有足够的标注数据可用,且文本表达情感较为复杂时。

b. 深度学习方法

  • 工作原理:利用深度神经网络(如卷积神经网络CNN,循环神经网络RNN)自动提取文本特征,并进行情感分类。
  • 优点:能够自动学习复杂的语言特征,处理更复杂的文本结构和含义。
  • 缺点:模型训练需要大量的计算资源和时间。
  • 适用场景:适用于大规模文本数据和需要高准确度的情境,尤其是当文本具有复杂的结构和语义时。

三、Python进行情感极性分析

import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer# 下载情感分析所需的nltk数据
nltk.download('vader_lexicon')# 初始化情感分析器
sia = SentimentIntensityAnalyzer()# 从NLTK示例数据集中加载一些示例评论
reviews = ["It's an amazing movie.","This is a dull movie. I would never recommend it to anyone.","The cinematography is pretty great in this movie.","The direction was terrible and the story was all over the place."
]# 对每个评论进行情感分析
for review in reviews:scores = sia.polarity_scores(review)print(f"{review} - {scores}")# 可视化情感分析结果
import matplotlib.pyplot as plt# 为每个评论计算情感分析得分
compound_scores = [sia.polarity_scores(review)['compound'] for review in reviews]
# 设置中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 创建一个水平条形图
plt.barh(reviews, compound_scores)
plt.xlabel('情感分数')
plt.ylabel('评论')
plt.title('情感分析')
plt.show()

相关文章:

【情感分析概述】

文章目录 一、情感极性分析概述1. 定义2. 情感极性的类别3. 应用场景 二、情感极性分析的技术方法1. 基于规则的方法a. 关键词打分b. 情感词典的使用 2. 基于机器学习的方法a. 监督学习方法b. 深度学习方法 三、Python进行情感极性分析 一、情感极性分析概述 情感极性分析&…...

【御控物联】JavaScript JSON结构转换(12):对象To数组——键值互换属性重组

文章目录 一、JSON结构转换是什么?二、核心构件之转换映射三、案例之《JSON对象 To JSON数组》四、代码实现五、在线转换工具六、技术资料 一、JSON结构转换是什么? JSON结构转换指的是将一个JSON对象或JSON数组按照一定规则进行重组、筛选、映射或转换…...

5.6 物联网RK3399项目开发实录-Android开发之U-Boot 编译及使用(wulianjishu666)

物联网入门到项目实干案例下载: https://pan.baidu.com/s/1fHRxXBqRKTPvXKFOQsP80Q?pwdh5ug --------------------------------------------------------------------------------------------------------------------------------- U-Boot 使用 前言 RK U-B…...

Python版【植物大战僵尸 +源码】

文章目录 写在前面:功能实现环境要求怎么玩个性化定义项目演示:源码分享Map地图:Menubar.py主菜单 主函数:项目开源地址 写在前面: 今天给大家推荐一个Gtihub开源项目:PythonPlantsVsZombies,翻译成中就是…...

【明道云】如何让用户可以新增但不能修改记录

【背景】 遇到一个需求场景,用户希望新增数据后锁住数据不让更改。 【分析】 在设计表单时直接将字段设置只读是不行的。字段设置只读将会直接让界面上此字段的前端组件不可编辑。包括新增时也无法填入。显然是不符合需求的。 需要既能新增,新增后又不…...

GPT-1原理-Improving Language Understanding by Generative Pre-Training

文章目录 前言提出动机模型猜想模型提出模型结构模型参数 模型预训练训练的目标训练方式训练参数预训练数据集预训练疑问点 模型微调模型输入范式模型训练微调建议微调疑问点 实验结果分析GPT-1缺陷 前言 首先想感慨一波 这是当下最流行的大模型的的开篇之作,由Op…...

web3.0入门及学习路径

Web3是指下一代互联网的演进形式,它涉及一系列技术和理念,旨在实现去中心化、开放、透明和用户主导的互联网体验。Web3的目标是赋予用户更多的控制权和数据所有权,并通过区块链、加密货币和分布式技术来实现。 一、特点 去中心化&#xff1…...

MATLAB 自定义中值滤波(54)

MATLAB 自定义中值滤波(54) 一、算法介绍二、算法实现1.原理2.代码一、算法介绍 中值滤波,是一种常见的点云平滑算法,改善原始点云的数据质量问题,MATLAB自带的工具似乎不太友好,这里提供自定义实现的点云中值滤波算法,具体效果如下所示: 中值滤波前: 中值滤波后:…...

harmonyOS的客户端存贮

什么是客户端存贮 在harmonyOS中,客户端存贮是指将数据存贮在本地设备以供应用程序使用; 注: 和feaureAblity搭配使用,content上下文的获取依赖该API如下: // 引入: import featureAbility from ohos.ability.featureAbility;// 使用: let content featureAbility.getConten…...

安科瑞智慧安全用电综合解决方案

概述 智慧用电管理云平台是智慧城市建设的延伸成果,将电力物联网技术与云平台的大数据分析功能相结合,实现用电信息的可视化管理,可帮助用户实现安全用电,节约用电,可靠用电。平台支持web,app,微…...

Web 前端性能优化之二:图像优化

1、图像优化 HTTP Archive上的数据显示,网站传输的数据中,60%的资源都是由各种图像文件组成的。 **图像资源优化的根本思想,可以归结为两个字:压缩。**无论是选取何种图像的文件格式,还是针对同一种格式压缩至更小的…...

android——枚举enum

在Kotlin中,枚举(Enum)是一种特殊的类,用于表示固定数量的常量。它允许你定义一组命名的常量值,这些值在程序中具有固定的意义。Kotlin的枚举功能强大,支持多种特性,如伴生对象、构造函数、属性…...

Day54:WEB攻防-XSS跨站Cookie盗取表单劫持网络钓鱼溯源分析项目平台框架

目录 XSS跨站-攻击利用-凭据盗取 XSS跨站-攻击利用-数据提交 XSS跨站-攻击利用-flash钓鱼 XSS跨站-攻击利用-溯源综合 知识点: 1、XSS跨站-攻击利用-凭据盗取 2、XSS跨站-攻击利用-数据提交 3、XSS跨站-攻击利用-网络钓鱼 4、XSS跨站-攻击利用-溯源综合 漏洞原理…...

2024年MathorCup数学建模思路C题思路分享

文章目录 1 赛题思路2 比赛日期和时间3 组织机构4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 比赛日期和时间 报名截止时间:2024…...

HCIP作业

实验要求: 1、R6为ISP,接口IP地址均为公有地址,该设备只能配置IP地址,之后不能再对其进行任何配置; 2、R1-R5为局域网,私有IP地址192.168.1.0/24,请合理分配; 3、R1、R2、R4&#x…...

如何向sql中插入数据-接上一篇《MySQL数据库的下载和安装以及命令行语法学习》续

接上一篇 《MySQL数据库的下载和安装以及命令行语法学习》续https://blog.csdn.net/tiger_web0/article/details/136903805 在SQL中,要向表中添加数据,您通常使用INSERT INTO语句。 以下是如何使用INSERT INTO语句的基本格式和示例: 基本格式…...

简单的HTML

1.HTML介绍 HTML(HyperText Markup Language,超文本标记语言)是用于创建网页的标准标记语言。它使用一系列的元素来描述网页的结构和内容,包括文本、图像、链接、表格等。 1.1HTML基础结构 HTML文件是一种纯文本文件,由一系列的元素构成。每个元素由一对尖括号<>包围,…...

2024最新 maven 高级用法 (概念自己百度)

#B站看视频学不到的知识# 目录 maven 定义和概念 maven是java构建工具。maven通过远程仓库获取和更新jar包&#xff0c;通过坐标来管理jar文件。 maven核心配置文件 config目录下settings.xml 文件&#xff0c;核心配置详解&#xff1a; localRepository 本地仓库地址&…...

【C++】每日一题 12 整数转罗马数字

罗马数字包含以下七种字符&#xff1a; I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#xff0c; 罗马数字 2 写做 II &#xff0c;即为两个并列的 1。12 写做 XII &#xff0c;即为…...

C++学习建议

C是一门强大且广泛应用的编程语言&#xff0c;特别适合系统级开发、高性能应用和游戏引擎等场景。如果你准备深入学习C&#xff0c;以下是一些关键点和学习路径建议&#xff1a; 1. **基础语法**&#xff1a;首先掌握C的基础语法&#xff0c;如变量声明与赋值、数据类型、运算…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...