当前位置: 首页 > news >正文

图论- 最小生成树

一、最小生成树-prim算法 

1.1 最小生成树概念

一幅图可以有很多不同的生成树,比如下面这幅图,红色的边就组成了两棵不同的生成树:

对于加权图,每条边都有权重(用最小生成树算法的现实场景中,图的边权重一般代表成本、距离这样的标量),所以每棵生成树都有一个权重和。比如上图,右侧生成树的权重和显然比左侧生成树的权重和要小。

那么最小生成树很好理解了,所有可能的生成树(包含所有顶点)中,权重和最小的那棵生成树就叫「最小生成树」

1.2 稠密图-朴素prim

和djikstra很像

const int INF = 0x3f3f3f3f; // 定义一个非常大的数,用作无穷远的初始化值
int n; // n表示图中的顶点数
int g[N][N]; // 邻接矩阵,用于存储图中所有边的权重
int dist[N]; // 用于存储其他顶点到当前最小生成树的最小距离
bool st[N]; // 用于标记每个顶点是否已经被加入到最小生成树中// Prim算法的实现,返回最小生成树的总权重
int prim() {memset(dist, 0x3f, sizeof dist); // 初始化所有顶点到MST的距离为无穷远int res = 0; // 存储最小生成树的总权重for (int i = 0; i < n; i++) { // 主循环,每次添加一个顶点到MSTint t = -1; // 用于找到当前未加入MST且dist最小的顶点for (int j = 1; j <= n; j++) // 遍历所有顶点,找到tif (!st[j] && (t == -1 || dist[t] > dist[j]))t = j;//t就是当前加入最小生成树的顶点if (i && dist[t] == INF) return INF; // 如果图不连通,则返回INFif (i) res += dist[t]; // 非首次迭代时,累加到MST的距离st[t] = true; // 将顶点t加入到MST中//再从T出发,更新所有未加入顶点到T的距离,用于下一轮新的T的更新for (int j = 1; j <= n; j++) // 更新其他所有顶点到MST的最小距离if (!st[j]) dist[j] = min(dist[j], g[t][j]);}return res; // 返回最小生成树的总权重
}

例题: 

#include<cstring>
#include<iostream>
#include<algorithm>using namespace std;const int N = 510,M = 100010,INF = 0x3f3f3f3f;int n,m;
int g[N][N];
int dist[N];
bool used[N];int prim(){memset(dist,0x3f,sizeof dist);int res = 0;for(int i = 0;i < n;i++){int t = -1;for(int j = 1;j <= n; j++){if((!used[j]) && (t == -1 || dist[t] > dist[j]))t = j;}used[t] = true;//第一步的dist[t]为INFif(i && dist[t] == INF) return INF;if(i)res += dist[t];for(int j = 1;j <= n;j++){if(!used[j])dist[j] = min(dist[j],g[t][j]);}}return res;
}int main(){scanf("%d%d",&n,&m);//重要memset(g,0x3f,sizeof(g));for(int i = 0;i < m; i++){int u,v,w;scanf("%d%d%d",&u,&v,&w);g[u][v] = g[v][u] = min(g[u][v],w);}int r = prim();if(r == INF)puts("impossible");else printf("%d",r);return 0;
}

1.3 堆优化的prim-不常用,且复杂,一般用kruskal替代

省略 

二、最小生成树-kruskal算法

1.并查集复习

1.1 并查集(Union-Find)算法

是一个专门针对「动态连通性」的算法,我之前写过两次,因为这个算法的考察频率高,而且它也是最小生成树算法的前置知识

动态连通性

简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:

这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:

1、自反性:节点 p 和 p 是连通的。

2、对称性:如果节点 p 和 q 连通,那么 q 和 p 也连通。

3、传递性:如果节点 p 和 q 连通,q 和 r 连通,那么 p 和 r 也连通。

 现在我们的 Union-Find 算法主要需要实现这三个 API:

class UF {
public:/* 将 p 和 q 连接 */void union(int p, int q);/* 判断 p 和 q 是否连通 */bool connected(int p, int q);/* 返回图中有多少个连通分量 */int count();
};

函数功能说明:

比如说之前那幅图,0~9 任意两个不同的点都不连通,调用 connected 都会返回 false,连通分量为 10 个。

如果现在调用 union(0, 1),那么 0 和 1 被连通,连通分量降为 9 个。

再调用 union(1, 2),这时 0,1,2 都被连通,调用 connected(0, 2) 也会返回 true,连通分量变为 8 个。

 初始化:

怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:

代码如下:

class UF {// 记录连通分量private:int count;// 节点 x 的父节点是 parent[x]int* parent;public:/* 构造函数,n 为图的节点总数 */UF(int n) {// 一开始互不连通this->count = n;// 父节点指针初始指向自己parent = new int[n];for (int i = 0; i < n; i++)parent[i] = i;}/* 其他函数 */
};

 union实现:

操作如下:

代码如下:

class UF {// 为了节约篇幅,省略上文给出的代码部分...public:void union(int p, int q) {int rootP = find(p);int rootQ = find(q);if (rootP == rootQ)return;// 将两棵树合并为一棵parent[rootP] = rootQ;// parent[rootQ] = rootP 也一样count--; // 两个分量合二为一}/* 返回某个节点 x 的根节点 */int find(int x) {// 根节点的 parent[x] == xwhile (parent[x] != x)x = parent[x];return x;}/* 返回当前的连通分量个数 */int count() {return count;}
};

 connected实现:

代码如下:

class UF {
private:// 省略上文给出的代码部分...public:bool connected(int p, int q) {int rootP = find(p);int rootQ = find(q);return rootP == rootQ;}
};

 1.2 平衡性优化-union优化

分析union和connected的时间复杂度,我们发现,主要 API connected和 union 中的复杂度都是 find 函数造成的,所以说它们的复杂度和 find 一样。

find 主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是 logN,但这并不一定。logN 的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成 N

图论解决的都是诸如社交网络这样数据规模巨大的问题,对于 union 和 connected 的调用非常频繁,每次调用需要线性时间完全不可忍受。

关键在于 union 过程,我们一开始就是简单粗暴的把 p 所在的树接到 q 所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:

 长此以往,树可能生长得很不平衡。我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些。解决方法是额外使用一个 size 数组,记录每棵树包含的节点数,我们不妨称为「重量」:

class UF {
private:int count;int* parent;// 新增一个数组记录树的“重量”int* size;public:UF(int n) {this->count = n;parent = new int[n];// 最初每棵树只有一个节点// 重量应该初始化 1size = new int[n];for (int i = 0; i < n; i++) {parent[i] = i;size[i] = 1;}}/* 其他函数 */
};

比如说 size[3] = 5 表示,以节点 3 为根的那棵树,总共有 5 个节点。这样我们可以修改一下 union 方法:

class UF {
private:// 为了节约篇幅,省略上文给出的代码部分...
public:void union(int p, int q) {int rootP = find(p);int rootQ = find(q);if (rootP == rootQ)return;// 小树接到大树下面,较平衡if (size[rootP] > size[rootQ]) {parent[rootQ] = rootP;size[rootP] += size[rootQ];} else {parent[rootP] = rootQ;size[rootQ] += size[rootP];}count--;}
};

这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在 logN 这个数量级,极大提升执行效率。

此时,find , union , connected 的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。

1.3 路径压缩-find优化

其实我们并不在乎每棵树的结构长什么样,只在乎根节点

因为无论树长啥样,树上的每个节点的根节点都是相同的,所以能不能进一步压缩每棵树的高度,使树高始终保持为常数?

这样每个节点的父节点就是整棵树的根节点,find 就能以 O(1) 的时间找到某一节点的根节点,相应的,connected 和 union 复杂度都下降为 O(1)。

要做到这一点主要是修改 find 函数逻辑,非常简单,但你可能会看到两种不同的写法。

方法1:

class UF {// 为了节约篇幅,省略上文给出的代码部分...private:int find(int x) {while (parent[x] != x) {// 这行代码进行路径压缩parent[x] = parent[parent[x]];x = parent[x];}return x;}
};

每次使得当前x指向父节点的父节点,这样会将一些节点向上移,然后缩短树的长度

压缩结束为: 

方法二:

class UF {// 为了节约篇幅,省略上文给出的代码部分...// 第二种路径压缩的 find 方法public:int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}
};

 其迭代写法如下(便于理解):

int find(int x) {// 先找到根节点int root = x;while (parent[root] != root) {root = parent[root];}// 然后把 x 到根节点之间的所有节点直接接到根节点下面int old_parent = parent[x];while (x != root) {parent[x] = root;x = old_parent;old_parent = parent[old_parent];}return root;
}

最终效果: 

1.4 并查集框架-优化后 

class UF {
private:// 连通分量个数int count;// 存储每个节点的父节点int *parent;public:// n 为图中节点的个数UF(int n) {this->count = n;parent = new int[n];for (int i = 0; i < n; i++) {parent[i] = i;}}// 将节点 p 和节点 q 连通void union_(int p, int q) {int rootP = find(p);int rootQ = find(q);if (rootP == rootQ)return;parent[rootQ] = rootP;// 两个连通分量合并成一个连通分量count--;}// 判断节点 p 和节点 q 是否连通bool connected(int p, int q) {int rootP = find(p);int rootQ = find(q);return rootP == rootQ;}int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}// 返回图中的连通分量个数int count_() {return count;}
};

2.kruskal

给你输入编号从 0 到 n - 1 的 n 个结点,和一个无向边列表 edges(每条边用节点二元组表示),请你判断输入的这些边组成的结构是否是一棵树。

如果输入:

n = 5
edges = [[0,1], [0,2], [0,3], [1,4]]

 这些边构成的是一棵树,算法应该返回 true:

 输入:

n = 5
edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]

 形成的就不是树结构了,因为包含环:

我们思考为何会产生环?仔细体会下面两种添边的差别

 

总结一下规律就是:

对于添加的这条边,如果该边的两个节点本来就在同一连通分量里,那么添加这条边会产生环;反之,如果该边的两个节点不在同一连通分量里,则添加这条边不会产生环

那么只需要在union两节点之前先检测两节点是否已经connection,如果已连接所有添加后会生成环,则返回false。同时需要注意count==1,不然就是森林了。

代码如下:

class UF {
public:vector<int> parent;UF(int n) {for (int i = 0; i < n; i++) {parent.push_back(i);}}int find(int x) {while (x != parent[x]) {parent[x] = parent[parent[x]];x = parent[x];}return x;}void union_(int p, int q) {int root_p = find(p);int root_q = find(q);parent[root_p] = root_q;}bool connected(int p, int q) {int root_p = find(p);int root_q = find(q);return root_p == root_q;}int count() {int cnt = 0;for (int i = 0; i < parent.size(); i++) {if (parent[i] == i) {cnt++;}}return cnt;}
};bool validTree(int n, vector<vector<int>>& edges) {UF uf(n);// 遍历所有边,将组成边的两个节点进行连接for (auto edge : edges) {int u = edge[0];int v = edge[1];// 若两个节点已经在同一连通分量中,会产生环if (uf.connected(u, v)) {return false;}// 这条边不会产生环,可以是树的一部分uf.union_(u, v);}// 要保证最后只形成了一棵树,即只有一个连通分量return uf.count() == 1;
}

3.连接所有点的最小费用-kruskal算法

 所谓最小生成树,就是图中若干边的集合(我们后文称这个集合为 mst,最小生成树的英文缩写),你要保证这些边:

1、包含图中的所有节点。

2、形成的结构是树结构(即不存在环)。

3、权重和最小。

有之前题目的铺垫,前两条其实可以很容易地利用 Union-Find 算法做到,关键在于第 3 点,如何保证得到的这棵生成树是权重和最小的。

这里就用到了贪心思路:

将所有边按照权重从小到大排序,从权重最小的边开始遍历,如果这条边和 mst 中的其它边不会形成环,则这条边是最小生成树的一部分,将它加入 mst 集合;否则,这条边不是最小生成树的一部分,不要把它加入 mst 集合

以此题为例:

 此题虽然是使用kruskal算法,但是并不是直接套用,还要有一些值得注意的事项

1:我们要将题目中的给出点,转换为点组合并且将权重添加进去

在题中只给出一个点的坐标,我们需要想方法转换为两个点的链接,所以需要将每个点(两个坐标组合)转换为一个符号标记,在链接数组把相连的两个符号放一起就行了,很明显,我们使用0-n-1来记录每一个点是最合适的,不仅方便遍历也一目了然

因此有如下代码:

        vector<vector<int>> edges;for(int i =0;i < points.size();i++){//此处不能写为int j = 0,这样会重复导致超时,根据求子集的思想,应该从j=i+1开始for(int j = i+1;j < points.size();j++){// if(i == j)continue;//因为j=i+1开始,所有不需要这句判断int w1 = abs(points[i][0]-points[j][0]);int w2 = abs(points[i][1]-points[j][1]);edges.push_back({i,j,w1+w2});}}

 2:我们要对得到的数组进行排序,而且是对权重维度排序,这就需要我们利用lambda来自定义sort的排序方式了

有代码如下:

        sort(edges.begin(),edges.end(),[](const vector<int>& a,const vector<int>& b){return a[2] < b[2];});

依照kruskal算法,可以写出如下完整代码:

class uf{private:int count;vector<int> parent;public:uf(int n){this->count = n;// parent = new int[n];parent.resize(n);for(int i=0;i < n;i++){parent[i] = i;}}int find(int x){if(parent[x]!=x)parent[x] = find(parent[x]);return  parent[x];}void Union(int p,int q){int rootp = find(p);int rootq = find(q);if(rootp == rootq)return;parent[rootp] = rootq;count--;}bool connection(int p,int q){int rootp = find(p);int rootq = find(q);return rootp == rootq;}
};class Solution {
public:int minCostConnectPoints(vector<vector<int>>& points) {vector<vector<int>> edges;for(int i =0;i < points.size();i++){//此处不能写为int j = 0,这样会重复导致超时,根据求子集的思想,应该从j=i+1开始for(int j = i+1;j < points.size();j++){// if(i == j)continue;//因为j=i+1开始,所有不需要这句判断int w1 = abs(points[i][0]-points[j][0]);int w2 = abs(points[i][1]-points[j][1]);edges.push_back({i,j,w1+w2});}}sort(edges.begin(),edges.end(),[](const vector<int>& a,const vector<int>& b){return a[2] < b[2];});uf uf(points.size());int sum_w = 0;for(auto& s : edges){int q = s[0],p = s[1],w = s[2];if(uf.connection(p,q))continue;sum_w +=w;uf.Union(p,q);}return sum_w;}
};

相关文章:

图论- 最小生成树

一、最小生成树-prim算法 1.1 最小生成树概念 一幅图可以有很多不同的生成树&#xff0c;比如下面这幅图&#xff0c;红色的边就组成了两棵不同的生成树&#xff1a; 对于加权图&#xff0c;每条边都有权重&#xff08;用最小生成树算法的现实场景中&#xff0c;图的边权重…...

LeetCode刷题记(一):1~30题

1. 两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能重复出现。 你可以…...

芒果YOLOv5改进89:卷积SPConv篇,即插即用,去除特征图中的冗余,FLOPs 和参数急剧下降,提升小目标检测

芒果专栏 基于 SPConv 的改进结构,改进源码教程 | 详情如下🥇 👉1. SPConv 结构、👉2. CfSPConv 结构 💡本博客 改进源代码改进 适用于 YOLOv5 按步骤操作运行改进后的代码即可 即插即用 结构。博客 包括改进所需的 核心结构代码 文件 YOLOv5改进专栏完整目录链接:…...

Linux:详解TCP报头类型

文章目录 温习序号的意义序号和确认序号报文的类型 TCP报头类型详解ACK: 确认号是否有效SYN: 请求建立连接; 我们把携带SYN标识的称为同步报文段FIN: 通知对方, 本端要关闭了PSH: 提示接收端应用程序立刻从TCP缓冲区把数据读走RST: 对方要求重新建立连接; 我们把携带RST标识的称…...

【Leetcode】top 100 二分查找

35 搜索插入位置 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。请必须使用时间复杂度为 O(log n) 的算法。 基础写法&#xff01;&#xff01;&#xff01;牢记…...

Redis高级面试题-2024

说说你对Redis的理解 Redis是一个基于Key-Value存储结构的开源内存数据库&#xff0c;也是一种NoSQL数据库。 它支持多种数据类型&#xff0c;包括String、Map、Set、ZSet和List&#xff0c;以满足不同应用场景的需求。 Redis以内存存储和优化的数据结构为基础&#xff0c;提…...

HarmonyOS 应用开发之FA模型与Stage模型应用组件

应用配置文件概述&#xff08;FA模型&#xff09; 每个应用项目必须在项目的代码目录下加入配置文件&#xff0c;这些配置文件会向编译工具、操作系统和应用市场提供描述应用的基本信息。 应用配置文件需申明以下内容&#xff1a; 应用的软件Bundle名称&#xff0c;应用的开发…...

6个黑科技网站,永久免费

1、http://mfsc123.com https://www.mfsc123.com 一个非常赞的免费商用素材导航网站。 收集了各种免费、免版权的图片、插画、视频、视频模板、音乐、音效、字体、图标网站。 再也不用担心版权问题&#xff0c;都能免费商用&#xff0c;自媒体作者必备。 而且还在每个网站…...

Linux 内核优化简笔 - 高并发的系统

简介 Linux 服务器在高并发场景下&#xff0c;默认的内核参数无法利用现有硬件&#xff0c;造成软件崩溃、卡顿、性能瓶颈。 当然&#xff0c;修改参数只是让Linux更好软件的去利用已有的硬件资源&#xff0c;如果硬件资源不够也无法解决问题的。而且当硬件资源不足的时候&am…...

整型之韵,数之舞:大小端与浮点数的内存之旅

✨✨欢迎&#x1f44d;&#x1f44d;点赞☕️☕️收藏✍✍评论 个人主页&#xff1a;秋邱’博客 所属栏目&#xff1a;人工智能 &#xff08;感谢您的光临&#xff0c;您的光临蓬荜生辉&#xff09; 1.0 整形提升 我们先来看看代码。 int main() {char a 3;char b 127;char …...

变量作用域

变量作用域 标识符的作用域是定义为其声明在程序里的可应用范围, 或者即是我们所说的变量可见性。换句话说,就好像在问你自己,你可以在程序里的哪些部分去访问一个制定的标识符。变量可以是局部域或者全局域。 全局变量与局部变量 定义在函数内的变量有局部作用域,在一个…...

数据结构:链表的双指针技巧

文章目录 一、链表相交问题二、单链表判环问题三、回文链表四、重排链表结点 初学双指针的同学&#xff0c;请先弄懂删除链表的倒数第 N 个结点。 并且在学习这一节时&#xff0c;不要将思维固化&#xff0c;认为只能这样做&#xff0c;这里的做法只是技巧。 一、链表相交问题 …...

用WHERE命令可以在命令行搜索文件

文章目录 用WHERE命令可以在命令行搜索文件概述笔记没用的小程序END 用WHERE命令可以在命令行搜索文件 概述 想确认PATH变量中是否存在某个指定的程序(具体是在PATH环境变量中给出的哪个路径底下?). 开始不知道windows有where这个命令, 还自己花了2个小时写了一个小程序. 后…...

持续交付/持续部署流水线介绍(CD)

目录 一、概述 二、典型操作流程 2.1 CI/CD典型操作流 2.2 CI/CD操作流程说明 2.3 总结 三、基于GitHubDocker的持续交付/持续部署流水线&#xff08;公有云&#xff09; 3.1 基于GitHubDocker的持续交付/持续部署操作流程示意图 3.2 GitHubDocker持续交付/持续部署流水…...

第四百三十八回

文章目录 1. 概念介绍2. 思路与方法2.1 实现思路2.2 实现方法 3. 示例代码4. 内容总结 们在上一章回中介绍了"不同平台上换行的问题"相关的内容&#xff0c;本章回中将介绍如何在页面上显示蒙板层.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们…...

Python学习:面相对象

面向对象 面向对象技术简介 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。方法:类中定义的函数。类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实…...

SSM学习——Spring AOP与AspectJ

Spring AOP与AspectJ 概念 AOP的全称为Aspect-Oriented Programming&#xff0c;即面向切面编程。 想象你是汉堡店的厨师&#xff0c;每一份汉堡都有好几层&#xff0c;这每一层都可以视作一个切面。现在有一位顾客想要品尝到不同风味肉馅的汉堡&#xff0c;如果按照传统的方…...

Android 使用LeakCanary检测内存泄漏,分析原因

内存泄漏是指无用对象&#xff08;不再使用的对象&#xff09;持续占有内存或无用对象的内存得不到及时释放&#xff0c;从而造成内存空间的浪费称为内存泄漏。 平时我们在使用app时&#xff0c;少量的内存泄漏我们是发现不了的&#xff0c;但是当内存泄漏达到一定数量时&…...

Linux部署Kafka2.8.1

安装Jdk 首先确保你的机器上安装了Jdk&#xff0c;Kafka需要Java运行环境&#xff0c;低版本的Kafka还需要Zookeeper&#xff0c;我此次要安装的Kafka版本为2.8.1&#xff0c;已经内置了一个Zookeeper环境&#xff0c;所以我们可以不部署Zookeeper直接使用。 1、解压Jdk包 t…...

【pytest、playwright】allure报告生成视频和图片

目录 1、修改插件pytest_playwright 2、conftest.py配置 3、修改pytest.ini文件 4、运行case 5、注意事项 1、修改插件pytest_playwright pytest_playwright.py内容如下&#xff1a; # Copyright (c) Microsoft Corporation. # # Licensed under the Apache License, Ver…...

浅谈iOS开发中的自动引用计数ARC

1.ARC是什么 我们知道&#xff0c;在C语言中&#xff0c;创建对象时必须手动分配和释放适量的内存。然而&#xff0c;在 Swift 中&#xff0c;当不再需要类实例时&#xff0c;ARC 会自动释放这些实例的内存。 Swift 使用 ARC 来跟踪和管理应用程序的内存&#xff0c;其主要是由…...

Spring IoCDI(2)

IoC详解 通过上面的案例, 我们已经知道了IoC和DI的基本操作, 接下来我们来系统地学习Spring IoC和DI的操作. 前面我们提到的IoC控制反转, 就是将对象的控制权交给Spring的IoC容器, 由IoC容器创建及管理对象. (也就是Bean的存储). Bean的存储 我们之前只讲到了Component注解…...

30. UE5 RPG GamplayAbility的配置项

在上一篇文章&#xff0c;我们介绍了如何将GA应用到角色身上的&#xff0c;接下来这篇文章&#xff0c;将主要介绍一下GA的相关配置项。 在这之前&#xff0c;再多一嘴&#xff0c;你要能激活技能&#xff0c;首先要先应用到ASC上面&#xff0c;才能够被激活。 标签 之前介绍…...

提升自己最快的方式是什么?

提升自己最快的方式通常涉及到个人成长的各个方面&#xff0c;包括心理、情感、技能和知识等。根据查阅到的资料&#xff0c;以下是一些具体的方法和步骤&#xff0c;帮助你快速提升自己&#xff1a; 1. 培养屏蔽力 荷兰畅销书作家罗伊马丁纳提到&#xff0c;屏蔽力是个人成长…...

题目:一个5位数,判断它是不是回文数。即12321是回文数,个位与万位相同,十位与千位相同。

题目&#xff1a;一个5位数&#xff0c;判断它是不是回文数。即12321是回文数&#xff0c;个位与万位相同&#xff0c;十位与千位相同。    There is no nutrition in the blog content. After reading it, you will not only suffer from malnutrition, but also impotence…...

《HelloGitHub》第 96 期

兴趣是最好的老师&#xff0c;HelloGitHub 让你对编程感兴趣&#xff01; 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 https://github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等&#xff0c;涵盖多种编程语言 …...

C++tuple类型

tuple 类型 tuple是类似pair的模板。 每个pair的成员类型都不相同&#xff0c;但每个pair都恰好有两个成员。不同tuple类型的成员类型也不相同&#xff0c;但一个tuple可以有任意数量的成员。 每个确定的tuple类型的成员数目是固定的&#xff0c;但一个tuple类型的成员数目可…...

亚远景科技-浅谈ASPICE标准和ASPICE认证/评估

ASPICE&#xff08;Automotive SPICE&#xff09;是一种针对汽车行业的软件开发过程的评估模型&#xff0c;它旨在帮助汽车制造商和供应商提高软件开发过程的能力和质量&#xff0c;从而提升产品的质量、安全性和效率。 ASPICE标准涵盖了软件开发的各个阶段和活动&#xff0c;…...

PHP性能提升方案

一、背景与介绍 PHP语言开发效率高&#xff0c;特别应用于适合中小型项目&#xff0c;对于创业初期敏捷开发验证项目可行性或者Demo演示绝对占据优势。 但是随着现在Web应用的复杂性&#xff0c;针对项目要适应高并发、高流量的访问特性&#xff0c;PHP确实在性能方面相对Go、J…...

关系(二)利用python绘制热图

关系&#xff08;二&#xff09;利用python绘制热图 热图 &#xff08;Heatmap&#xff09;简介 热图适用于显示多个变量之间的差异&#xff0c;通过颜色判断彼此之间是否存在相关性。 快速绘制 基于seaborn import seaborn as sns import pandas as pd import numpy as np i…...

如何建设网站主页和其他相关页面/seo关键词排名优化要多少钱

《HTML5介绍ppt课件.ppt》由会员分享&#xff0c;可在线阅读&#xff0c;更多相关《HTML5介绍ppt课件.ppt(20页珍藏版)》请在人人文库网上搜索。1、Welcome to HTML 5,什么是HTML5,HTML5的特点,HTML5的新特性,简介趋势,优势 var cxtc.getContext(2d); var grdcxt.createLinearG…...

网站怎么不要钱自己做/大数据

MapReduce 1. MapReduce 思想 2.MapReduce的设计构思 3.MapReduce的编写流程 运行模式...

wordpress前台注册地址/网站建设定制

本文由玉刚说写作平台提供写作赞助 原作者&#xff1a;Zackratos 版权声明&#xff1a;本文版权归微信公众号 玉刚说 所有&#xff0c;未经许可&#xff0c;不得以任何形式转载 什么是 MVP MVP 全称&#xff1a;Model-View-Presenter &#xff1b;MVP 是从经典的模式 MVC 演变而…...

28网站怎么做代理/腾讯广点通

计算几何中长遇到的问题&#xff1a;判断特定点是否在平面多边形内部。向量叉积是一种方法&#xff0c;用于凸多边形。【优角&#xff1a;角度值大于180度小于360度。凸多边形&#xff1a;沿着多边形的一边做一条直线&#xff0c;如果剩下所有的部分都在直线的同侧&#xff0c;…...

wordpress多用户模版/市场营销案例100例

marker on google Maps Page 186 在谷歌地图上增加你的地理坐标。 更多有关Google Maps JavaScript API http://code.google.com/apis/maps/documentation/javascript/ 使用方法如下。 需要在原来的基础上增加一个方法在上一篇博客的showMap()函数中。是加入 function addMarke…...

如何做网站咨询/免费b站推广网站短视频

目录&#xff1a;python学习目录 开发环境&#xff1a;vs 2019os.access(para1, para2) 用来判断para1路径有什么权限 para1&#xff1a;文件路径 para2&#xff1a;有以下四个值 os.F_OK&#xff1a;测试para1路径是否存在 os.R_OK&#xff1a;测试para1路径是否允许读 os.W_O…...