当前位置: 首页 > news >正文

解锁智能未来:用Ollama开启你的本地AI之旅

 Ollama是一个用于在本地运行大型语言模型(LLM)的开源框架。它旨在简化在Docker容器中部署LLM的过程,使得管理和运行这些模型变得更加容易。Ollama提供了类似OpenAI的API接口和聊天界面,可以非常方便地部署最新版本的GPT模型并通过接口使用。此外,Ollama还支持热加载模型文件,用户无需重新启动即可切换不同的模型。

参考资料:

官网:GitHub - ollama/ollama: Get up and running with Llama 2, Mistral, Gemma, and other large language models.

 介绍文章:

从22K star的超强工具:Ollama,一条命令在本地跑 Llama2 - 知乎

最简步骤:

下载和安装:

curl https://ollama.ai/install.sh | sh

 运行例子:

ollama run phi
# ollama run llama 

phi更小,更方便测试。然后就会进入交互对话的界面了,比如:

ollama run phi

>>> 你好
 Hello!  How can I assist you today?


>>>  中国首都是哪里?
 Beijing is the capital city of China and it

ollama详细安装步骤:

初始安装

初步尝试了一下,在本地和AIStudio安装,执行:

curl https://ollama.ai/install.sh | sh

本地显示一个进度条,速度特别慢,估计要2个小时。快慢取决于网速,最终测试安装估计用了4-6个小时。

AIStudio直接在第一步就被拒了,直接报curl Empty reply from server。另Ollama需要pytorch,所以在AIStudio里最终是不适配的。

运行phi模型

phi模型只有1.7G,下载速度也比较快,大约几分钟就下好了。

运行和输出:

ollama run phi
pulling manifest 
pulling 04778965089b... 100% ▕███████████████████▏ 1.6 GB                         
pulling 7908abcab772... 100% ▕███████████████████▏ 1.0 KB                         
pulling 774a15e6f1e5... 100% ▕███████████████████▏   77 B                         
pulling 3188becd6bae... 100% ▕███████████████████▏  132 B                         
pulling 0b8127ddf5ee... 100% ▕███████████████████▏   42 B                         
pulling 4ce4b16d33a3... 100% ▕███████████████████▏  555 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 
>>> 你好Hello!  How can I assist you today?>>>  中国首都是哪里? Beijing is the capital city of China and it

总结:

Ollama是一个强大的工具,适用于希望在本地环境中探索和使用大型语言模型的用户,特别是那些对AI技术有深入兴趣和需求的专业人士。

相关文章:

解锁智能未来:用Ollama开启你的本地AI之旅

Ollama是一个用于在本地运行大型语言模型(LLM)的开源框架。它旨在简化在Docker容器中部署LLM的过程,使得管理和运行这些模型变得更加容易。Ollama提供了类似OpenAI的API接口和聊天界面,可以非常方便地部署最新版本的GPT模型并通过…...

CSS实现卡片在鼠标悬停时突出效果

在CSS中,实现卡片在鼠标悬停时突出,通常使用:hover伪类选择器。 :hover伪类选择器用于指定当鼠标指针悬停在某个元素上时,该元素的状态变化。通过:hover选择器,你可以定义鼠标悬停在元素上时元素的样式,比如改变颜色、…...

GPT建模与预测实战

代码链接见文末 效果图: 1.数据样本生成方法 训练配置参数: --epochs 40 --batch_size 8 --device 0 --train_path data/train.pkl 其中train.pkl是处理后的文件 因此,我们首先需要执行preprocess.py进行预处理操作,配置参数…...

传统方法(OpenCV)_车道线识别

一、思路 基于OpenCV的库:对视频中的车道线进行识别 1、视频处理:视频读取 2、图像转换:图像转换为灰度图 3、噪声去除:高斯模糊对图像进行去噪,提高边缘检测的准确性 4、边缘检测:Canny算法进行边缘检测…...

Git以及Gitlab的快速使用文档

优质博文:IT-BLOG-CN 安装git 【1】Windows为例,去百度下载安装包。或者去官网下载。安装过秳返里略过,一直下一步即可。丌要忉记设置环境发量。 【2】打开cmd,输入git –version正确输出版本后则git安装成功。 配置ssh Git和s…...

MyBatis Interceptor拦截器高级用法

拦截插入操作 场景描述:插入当前数据时,同时复制当前数据插入多行。比如平台权限的用户,可以同时给其他国家级别用户直接插入数据 实现: import lombok.extern.slf4j.Slf4j; import org.apache.ibatis.executor.Executor; impor…...

Python学习入门(2)——进阶功能

14. 迭代器和迭代协议 在Python中,迭代器是支持迭代操作的对象,即它们可以一次返回其成员中的一个。任何实现了 __iter__() 和 __next__() 方法的对象都是迭代器。 class Count:def __init__(self, low, high):self.current lowself.high highdef __i…...

华为改进点

华为公司可以在员工福利方面做出改进,提高员工的工作满意度和忠诚度。例如,可以增加员工福利,如提供更多灵活的工作时间、提供更好的培训和发展机会、加大健康保障和福利待遇等。 此外,华为公司也可以加强与客户的沟通与合作&…...

分布式技术---------------消息队列中间件之 Kafka

目录 一、Kafka 概述 1.1为什么需要消息队列(MQ) 1.2使用消息队列的好处 1.2.1解耦 1.2.2可恢复性 1.2.3缓冲 1.2.4灵活性 & 峰值处理能力 1.2.5异步通信 1.3消息队列的两种模式 1.3.1点对点模式(一对一,消费者主动…...

BGP扩展知识总结

一、BGP的宣告问题 在BGP协议中每台运行BGP的设备上,宣告本地直连路由在BGP协议中运行BGP协议的设备,来宣告通过IGP学习到的未运行BGP协议设备产生的路由;(常见) 在BGP协议中宣告本地路由表中路由条目时,将…...

华为OD-C卷-按身高和体重排队[100分]

题目描述 某学校举行运动会,学生们按编号(1、2、3…n)进行标识,现需要按照身高由低到高排列,对身高相同的人,按体重由轻到重排列;对于身高体重都相同的人,维持原有的编号顺序关系。请输出排列后的学生编号…...

云原生(八)、Kubernetes基础(一)

K8S 基础 # 获取登录令牌 kubectl create token admin --namespace kubernetes-dashboard1、 NameSpace Kubernetes 启动时会创建四个初始名字空间 default:Kubernetes 包含这个名字空间,以便于你无需创建新的名字空间即可开始使用新集群。 kube-node-lease: 该…...

Linux 系统解压缩文件

Linux系统,可以使用unzip命令来解压zip文件 方法如下 1. 打开终端,在命令行中输入以下命令来安装unzip: sudo apt-get install unzip 1 2. 假设你想要将zip文件解压缩到名为"target_dir"的目录中,在终端中切换到目标路…...

linux如何使 CPU使用率保持在指定百分比?

目录 方法1:(固定在100%) 方法2:(可以指定0~100%) 方法3:使用ChaosBlade工具(0~100%) 方法1:(固定在100%) for i in seq 1 $(cat /pro…...

LLMs之Morphic:Morphic(一款具有生成式用户界面的人工智能答案引擎)的简介、安装、使用方法之详细攻略

LLMs之Morphic:Morphic(一款具有生成式用户界面的人工智能答案引擎)的简介、安装、使用方法之详细攻略 目录 Morphic的简介 1、技术栈 Morphic的安装和使用方法 1、克隆仓库 2、安装依赖 3、填写密钥 4、本地运行应用 部署 Morphic的简介 2024年4月初发布&#xff…...

[react] useState的一些小细节

1.无限循环 因为setState修改是异步的,加上会触发函数重新渲染, 如果代码长这样 一秒再修改,然后重新触发setTImeout, 然后再触发,重复触发循环 如果这样呢 还是会,因为你执行又会重新渲染 2.异步修改数据 为什么修改多次还是跟不上呢? 函数传参解决 因为是异步修改 ,所以…...

蓝桥杯【第15届省赛】Python B组

这题目难度对比历届是相当炸裂的简单了…… A:穿越时空之门 【问题描述】 随着 2024 年的钟声回荡,传说中的时空之门再次敞开。这扇门是一条神秘的通道,它连接着二进制和四进制两个不同的数码领域,等待着勇者们的探索。 在二进制…...

CSS aspect-ratio属性设置元素宽高比

aspect-ratio 是CSS的一个属性&#xff0c;用于设置元素的期望宽高比。它设置确保元素保持特定的比例&#xff0c;不受其内容或容器大小的影响。 语法&#xff1a; aspect-ratio: <ratio>;其中 <ratio> 是一个由斜杠&#xff08;/&#xff09;分隔的两个数字&…...

Jones矩阵符号运算

文章目录 Jones向量Jones矩阵 有关Jones矩阵、Jones向量的基本原理&#xff0c;可参考这个&#xff1a; 通过Python理解Jones矩阵&#xff0c;本文主要介绍sympy中提供的有关偏振光学的符号计算工具 Jones向量 Jones向量是描述光线偏振状态的重要工具&#xff0c;例如一个偏振…...

解决 App 自动化测试的常见痛点!

App 自动化测试中有些常见痛点问题&#xff0c;如果框架不能很好的处理&#xff0c;就可能出现元素定位超时找不到的情况&#xff0c;自动化也就被打断终止了。很容易打消做自动化的热情&#xff0c;导致从入门到放弃。比如下面的两个问题&#xff1a; 一是 App 启动加载时间较…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...