当前位置: 首页 > news >正文

【小白的大模型之路】基础篇:Transformer细节

基础篇:Transformer

  • 引言
  • 模型基础架构
    • 原论文架构图
    • Embedding
    • Postional Encoding
    • Multi-Head Attention
    • LayerNorm
    • Encoder
    • Decoder
    • 其他

引言

此文作者本身对transformer有一些基础的了解,此处主要用于记录一些关于transformer模型的细节部分用于进一步理解其具体的实现机制,输入输出细节,以及一些理解.此文会不定期更新用于记录新学习到的知识.

模型基础架构

原论文架构图

首先给出的是原论文 Attention is all you need中的架构图,我们会在这个篇章部分分列模型pipeline中的各个部件。在最后给出关于这个模型图中没有的细节补充。

论文原图

Embedding

其使用的是nn.embedding来进行初始化,根据词表里的数量和设置的隐层维度来初始化,可训练。(**TODO:**这里会存在词表的初始化问题,即分词方法,在后续介绍)

Postional Encoding

两种编码方式,learned PE是绝对位置编码,即直接随机初始化一个可训练的参数;Sinusoidal PE为相对位置的三角编码,首先根据位置pos和隐层维度位置i得到embedding值
f ( p o s , i ) = s i n ( p o s 1000 0 i N ) i f i 为奇数   e l s e c o s f(pos,i)=sin(\frac{pos}{10000^{\frac{i}{N}}}) \ \ \ \ if\ \ i为奇数\ \ else\ \ cos f(pos,i)=sin(10000Nipos)    if  i为奇数  else  cos

Multi-Head Attention

单头attention 的 Q/K/V 的shape和多头attention 的每个头的Qi/Ki/Vi的大小是不一样的,假如单头attention 的 Q/K/V的参数矩阵WQ/WK/WV的shape分别是[512, 512] (此处假设encoder的输入和输出是一样的shape),那么多头attention (假设8个头)的每个头的Qi/Ki/Vi的参数矩阵WQi/WKi/WVi大小是[512, 512/8].

LayerNorm

BatchNorm本质是对同一个批次中,每一个数据样本的不同通道求均值方差,通道之间不进行交互,并通过滑动动量平均的方式将批次的均值方差记录下来用于推理。BN相对更适合在数据批次上具有统计意义的问题,其会抹平特征之间的差异,保留样本之间的大小关系。而在NLP任务当中,每个句子内部的特征大小关系才是需要保留的,不同句子之间关联不大,因此抹平样本之间的大小关系更为合适。

Encoder

Encoder一般包含两部分,self-attention和feed-forward。每一层Encoder都有独立的一组权重参数。最后一层Encoder得到的Wk,Wv用于计算Decoder的cross-attention。

Decoder

Decoder一般包含三个部分,self-attention, encoder-decoder-attention和feed-forward。在这里和这里有一些关于Decoder实际部署时的运行细节。

在训练的时候,Decoder通过mask得到ground truth的shift-right的下三角矩阵,对于位置t,其拥有前t-1个时刻的所有信息,之后计算矩阵得到该位置的output,该output和同位置的ground truth计算损失(即teach forcing的方法)。在推理时,通过padding一个一个输入,但只取最后一个时刻的output作为全局的预测结果,因此可能存在非对应位置最优解(即beam search)。

其他

  • 编码层解码层堆栈:事实上encoder和decoder是可以进行stack的,原论文图中只展示了一层,其实际实现逻辑是下图。
    在这里插入图片描述
  • transformer只能够处理定长输入和定长输出,对于长度不定的数据,通过padding -INF等方法来进行补全,由于softmax的存在这些会约等于0。

相关文章:

【小白的大模型之路】基础篇:Transformer细节

基础篇:Transformer 引言模型基础架构原论文架构图EmbeddingPostional EncodingMulti-Head AttentionLayerNormEncoderDecoder其他 引言 此文作者本身对transformer有一些基础的了解,此处主要用于记录一些关于transformer模型的细节部分用于进一步理解其具体的实现机…...

Golang | Leetcode Golang题解之第73题矩阵置零

题目&#xff1a; 题解&#xff1a; func setZeroes(matrix [][]int) {n, m : len(matrix), len(matrix[0])col0 : falsefor _, r : range matrix {if r[0] 0 {col0 true}for j : 1; j < m; j {if r[j] 0 {r[0] 0matrix[0][j] 0}}}for i : n - 1; i > 0; i-- {for …...

JMeter性能压测脚本录制

第一步&#xff1a;电脑打开控制面板设置代理服务器 第二步&#xff1a;jmeter的测试计划添加一个HTTP&#xff08;S&#xff09;脚本记录器 在脚本记录器里配置好信息&#xff0c;然后保存为脚本文件&#xff08;.*表示限定&#xff09; 此方框内容为项目地址&#xff08;可改…...

缓存雪崩、缓存击穿、缓存穿透是什么、之间的区别及解决办法

缓存雪崩、缓存击穿、缓存穿透&#xff1a; 详细介绍看这篇文章&#xff0c;写得很好&#xff1a; 什么是缓存雪崩、缓存击穿、缓存穿透 下面是我自己总结的&#xff0c;比较简单清楚地展示了缓存雪崩、缓存击穿和缓存穿透的根本区别和相应的解决办法。强烈建议看完上述文章后…...

Pytorch张量广播

Pytorch 中的主要的数据结构包括标量、向量、矩阵、张量&#xff0c;同时支持数据之间的运算。在 Pytorch 中有一个张量广播的概念&#xff0c;就是要把小的放大&#xff0c;最后在一起做计算&#xff0c;并不是所有的张量都可以计算&#xff0c;规则如下 首先比较维度&#x…...

AI算法-高数2-导数定义和公式

P14 2.1 导数的定义(一):2.1 导数的定义_哔哩哔哩_bilibili 导数定义&#xff1a; 导数公式&#xff1a; P15 2.1 导数的定义(二)&#xff1a;2.1 导数的定义&#xff08;二&#xff09;_哔哩哔哩_bilibili [a,b]可导&#xff0c;a的端点&#xff1a;右可导&#xff0c;b端点&…...

Vitis HLS 学习笔记--AXI_STREAM_TO_MASTER

目录 1. 简介 2. 示例 2.1 示例功能介绍 2.2 示例代码 2.3 顶层函数解释 2.4 综合报告&#xff08;HW Interfaces&#xff09; 2.5 关于TKEEP和TSTRB 2.6 综合报告&#xff08;SW I/O Information&#xff09; 3. 总结 1. 简介 本文通过“<Examples>/Interface…...

WPF之可翻转面板

1&#xff0c;创建翻转面板的资源字典&#xff1a;FlippPanel.xaml。 无外观控件同样必须给样式指定类型&#xff08; <ControlTemplate TargetType"ss:FlipPanel">&#xff09;&#xff0c;相关详情参考&#xff1a;WPF之创建无外观控件-CSDN博客&#xff09…...

【深度学习】--slowfast视频理解数据集处理pipeline

官网指引&#xff1a; facebookresearch SlowFast &#xff1a;https://github.com/facebookresearch/SlowFast 进入dataset&#xff1a;https://github.com/facebookresearch/SlowFast/blob/main/slowfast/datasets/DATASET.md 这里面的东西需要通读&#xff0c;但是不要过于…...

ArcGIS10.2能用了10.2.2不行了(解决)

前两天我们的推文介绍了 ArcGIS10.2系列许可到期解决方案-CSDN博客文章浏览阅读2次。本文手机码字&#xff0c;不排版了。 昨晚&#xff08;2021\12\17&#xff09;12点后&#xff0c;收到很多学员反馈 ArcGIS10.2系列软件突然崩溃。更有的&#xff0c;今天全单位崩溃。​提示许…...

mysql查询表信息(表名、表结构、字段信息等)

MySQL中&#xff0c;您可以使用以下SQL查询数据库的表信息或者某个表中具体的信息&#xff0c;例如&#xff1a;字段、字段描述、索引等&#xff0c;以下为具体的SQL&#xff1a; 1、查询数据库所有表信息&#xff08;表名/表描述&#xff09; SELECTtable_name name,TABLE_C…...

【MySQL探索之旅】JDBC (Java连接MySQL数据库)

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 |《MySQL探索之旅》 |《Web世界探险家》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更…...

tomcat-GC溢出

背景 一个项目需要导出大量的数据&#xff0c;导致GC但是这个项目在本地能够运行&#xff0c;但是在服务器上就不能运行本地和服务器的区别&#xff1a;NGINX和TOMCATGC和NGINX无关&#xff0c;那么就是Tomcat分配JVM的堆内存的容量不够 错误解决思路 网上教了一些查看JVM的大小…...

结合场景,浅谈深浅度拷贝

有两段代码是这样的&#xff1a; A段&#xff1a; List<String> list1 new ArrayList<>(); Bear B new Bear(); for(Apple apple : apples){B.url apple.url;B.content apple.content;list1.add(Bear); } B段&#xff1a; List<String> list1 new A…...

生成指定范围的随机整数

private static final Random RANDOM new Random();// 生成指定范围的随机整数public static int generateRandomInt(int min, int max) {return RANDOM.nextInt(max - min 1) min;}public static void main(String[] args) {Integer count 5;Integer randomInt generateR…...

少的缓存穿透是缓存击穿,大量的是缓存雪崩

只要请求穿过了缓存层&#xff0c;直接打到了数据库&#xff0c;我就把这个现象理解为缓存穿透。 只要缓存失效了&#xff0c;就会出现缓存穿透&#xff0c;然后根据失效缓存数量的多少&#xff0c;划分出缓存击穿和缓存雪崩 缓存一致性 先改redis再改mysql。...

设备能耗数据在线监测

在追求可持续发展和绿色经济的当下&#xff0c;企业对于设备能耗的管理愈发重视。设备能耗数据在线监测&#xff0c;不仅能帮助企业实时掌握设备的运行状况&#xff0c;还能为企业节能减排、降低运营成本提供有力支持。HiWoo Cloud平台凭借其先进的技术和丰富的经验&#xff0c…...

springboot整合websocket,超简单入门

springBoot整合webSocket&#xff0c;超简单入门 webSocket简洁 WebSocket 是一种基于 TCP 协议的全双工通信协议&#xff0c;它允许客户端和服务器之间建立持久的、双向的通信连接。相比传统的 HTTP 请求 - 响应模式&#xff0c;WebSocket 提供了实时、低延迟的数据传输能力。…...

代码随想录算法训练营第三十四天| 860.柠檬水找零 406.根据身高重建队列 452. 用最少数量的箭引爆气球

860.柠檬水找零 题目链接 思路 三种情况&#xff0c;一种贪心&#xff0c;在bill为20时&#xff0c;有一次贪心选择&#xff1a;优先考虑先找105&#xff0c;再考虑找3*5&#xff0c;因为5可以用于bill10和bill20两种情况 解题方法 第一种&#xff1a;bill5,直接收 第二种…...

ICode国际青少年编程竞赛- Python-2级训练场-识别循环规律2

ICode国际青少年编程竞赛- Python-2级训练场-识别循环规律2 1、 for i in range(3):Dev.step(3)Dev.turnRight()Dev.step(4)Dev.turnLeft()2、 for i in range(3):Spaceship.step(3)Spaceship.turnRight()Spaceship.step(1)3、 Dev.turnLeft() Dev.step(Dev.x - Item[1].…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

node.js的初步学习

那什么是node.js呢&#xff1f; 和JavaScript又是什么关系呢&#xff1f; node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说&#xff0c; 需要在node.js的环境上进行当JavaScript作为前端开发语言来说&#xff0c;需要在浏览器的环境上进行 Node.js 可…...