日常实习-小米计算机视觉算法岗面经
文章目录
- 流程
- 问题
- 请你写出项目中用到的模型代码,Resnet50
- (1)网络退化现象:把网络加深之后,效果反而变差了
- (2)过拟合现象:训练集表现很棒,测试集很差
- 把你做的工作里面的模型替换成ViT能行吗?
- 有了解过Stable difussion,transformer吗?
- 总结
流程
- 自我介绍
- 介绍项目
- 介绍论文
- 写代码
问题
请你写出项目中用到的模型代码,Resnet50
面试官:写出一个单元就好了。
实际面试过程中写出伪代码就好,
源代码:vision/torchvision/models/resnet.py
class BasicBlock(nn.Module):expansion: int = 1def __init__(self,inplanes: int,planes: int,stride: int = 1,downsample: Optional[nn.Module] = None,groups: int = 1,base_width: int = 64,dilation: int = 1,norm_layer: Optional[Callable[..., nn.Module]] = None,) -> None:super().__init__()if norm_layer is None:norm_layer = nn.BatchNorm2dif groups != 1 or base_width != 64:raise ValueError("BasicBlock only supports groups=1 and base_width=64")if dilation > 1:raise NotImplementedError("Dilation > 1 not supported in BasicBlock")# Both self.conv1 and self.downsample layers downsample the input when stride != 1self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = norm_layer(planes)self.relu = nn.ReLU(inplace=True)self.conv2 = conv3x3(planes, planes)self.bn2 = norm_layer(planes)self.downsample = downsampleself.stride = stridedef forward(self, x: Tensor) -> Tensor:identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out
里面的精华部分如下,我跳着写:
def __init__():self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = norm_layer(planes)self.relu = nn.ReLU(inplace = True)self.conv2 = conv3x3(planes, planes)self.bn2 = norm_layer(planes)self.downsample = downsampleself.stride = stridedef forward(self, x: Tensor) -> Tensor:identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out
在面试官的提示下我写了大概这样的伪代码:
def forward(x):identity = xout = conv2d(x)out = batchnorm(out)out = relu(out)out = conv2d(x)out = batchnorm(out)out += identityout = relu(out)return out
面试结果还没出,不保证我这样写是正确的!
进一步了解Resnet50,来自B站的同济子豪兄【精读AI论文】ResNet深度残差网络
- 有几种不好的现象:
(1)网络退化现象:把网络加深之后,效果反而变差了
用人话说明:一个孩子报名了课外辅导班,结果不仅作业写得更差了,考试也更差了;(学多了反而导致结果更糟糕)
(2)过拟合现象:训练集表现很棒,测试集很差
用人话说明:一个孩子作业做的很棒,一上考场就发挥失常;
把你做的工作里面的模型替换成ViT能行吗?
有了解过Stable difussion,transformer吗?
有一点点
【渣渣讲课】试图做一个正常讲解Latent / Stable Diffusion的成年人
总结
一面会重点针对简历上写的论文和项目,以及考察一些和岗位相关的前沿知识,坐在实验室是绝对绝对感受不到这些的!要勇敢踏出第一步;
间隔2天,官网显示流程终止 ╥﹏╥…
相关文章:
日常实习-小米计算机视觉算法岗面经
文章目录 流程问题请你写出项目中用到的模型代码,Resnet50(1)网络退化现象:把网络加深之后,效果反而变差了(2)过拟合现象:训练集表现很棒,测试集很差 把你做的工作里面的…...
(C++)string模拟实现
string底层是一个是字符数组 为了跟库里的string区别,所以定义一个命名空间将类string包含 一、构造 1.构造函数 注意:将char*传给const char*是范围缩小,因此只能1:1构造一个 strlen遇到nullptr解引用会报错,因此…...
类和对象的学习总结(一)
面向对象和面向过程编程初步认识 C语言是面向过程的,关注过程(分析求解问题的步骤) 例如:外卖,关注点菜,接单,送单等 C是面向对象的,关注对象,把一件事拆分成不同的对象&…...
力扣22. 括号生成
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。 示例 1:输入:n 3 输出:["((()))","(()())","(())()","()(())","()()(…...
检测窗口是否最大化兼容 Win10/11
检测窗口是否最大化(窗口覆盖或独占全屏)兼容 Win10/11 问题描述 在 Win10/11 上有很多 UWP 进程,检测窗口是否最大化将迎来新的挑战。这些窗口以其不能够使用 Win32 的 IsWindowVisible 获取窗口可见性为特征。此时,必须使用 D…...
【qsort函数】
前言 我们要学习qsort函数并利用冒泡函数仿照qsort函数 首先我们要了解一下qsort(快速排序) 这是函数的的基本参数 void qsort (void* base, size_t num, size_t size,int (*compar)(const void*,const void*)); 简单解释一下 base:指向…...
python类元编程示例-使用类型注解来检查转换属性值的类框架
用三种方式实现使用类型注解来检查转换属性值的类框架 1 __init_subclass__方式 1.1 代码实现 from collections.abc import Callable # <1> from typing import Any, NoReturn, get_type_hints from typing import Dict, Typeclass Field:def __init__(self, name: …...
Python3 笔记:字符串的 zfill() 和 rjust()
1、zfill() 方法返回指定长度的字符串,原字符串右对齐,前面填充0。 语法:str.zfill(width) width :指定字符串的长度。原字符串右对齐,前面填充0。 str1 2546 str2 2 print(str1.zfill(10)) # 运行结果࿱…...
SpringBoot项目启动提示端口号占用
Windows环境下,SpringBoot项目启动时报端口号占用: *************************** APPLICATION FAILED TO START ***************************Description:Web server failed to start. Port 8080 was already in use.Action:Identify and stop the proc…...
音视频开发23 FFmpeg 音频重采样
代码实现的功能 目的是 将: 一个采样率为 44100,采样通道为 2,格式为 AV_SAMPLE_FMT_DBL 的 in.pcm 数据 转换成 一个采样率为 48000,采样通道为 1,格式为 AV_SAMPLE_FMT_S16 的 out.pcm 数据 1.重采样 1.1 为什么要重…...
windows系统下安装fnm
由于最近做项目要切换多个node版本,查询了一下常用的有nvm和fnm这两种,对比了一下选择了fnm。 下载fnm 有两种方式,目前最新版本是1.37.0: 1.windows下打开powershell,执行以下命令下载fnm winget install Schniz.f…...
【Linux网络】传输层协议 - UDP
文章目录 一、传输层(运输层)运输层的特点复用和分用再谈端口号端口号范围划分认识知名端口号(Well-Know Port Number)两个问题① 一个进程是否可以绑定多个端口号?② 一个端口号是否可以被多个进程绑定? n…...
debugger(四):源代码
〇、前言 终于来到令人激动的源代码 level 了,这里将会有一些很有意思的算法,来实现源代码级别的调试,这将会非常有趣。 一、使用 libelfin 库 我们不可能直接去读取整个 .debug info 段来进行设置,这是没有必要的,…...
基于运动控制卡的圆柱坐标机械臂设计
1 方案简介 介绍一种基于运动控制卡制作一款scara圆柱坐标的机械臂设计方案,该方案控制器用运动控制卡制作一台三轴机械臂,用于自动抓取和放料操作。 2 组成部分 该机械臂的组成部分有研华运动控制卡,触摸屏,三轴圆柱坐标的平面运…...
MongoDBTemplate-基本文档查询
文章目录 流程概述步骤1:创建一个MongoDB的连接步骤2:创建一个查询对象Query步骤3:设置需要查询的字段步骤4:使用查询对象执行查询操作 流程概述 步骤描述步骤1创建一个MongoDB的连接步骤2创建一个查询对象Query步骤3设置需要查询…...
23种设计模式——创建型模式
设计模式 文章目录 设计模式创建型模式单例模式 [1-小明的购物车](https://kamacoder.com/problempage.php?pid1074)工厂模式 [2-积木工厂](https://kamacoder.com/problempage.php?pid1076)抽象⼯⼚模式 [3-家具工厂](https://kamacoder.com/problempage.php?pid1077)建造者…...
idm究竟有哪些优势
IDM(Internet Download Manager)是一款广受好评的下载管理工具,其主要优势包括: 高速下载:IDM支持最大32线程的下载,可以显著提升下载速度1。文件分类下载:IDM可以根据文件后缀进行分类&#x…...
如何学习Golang语言!
第一部分:Go语言概述 起源与设计哲学:Go语言由Robert Griesemer、Rob Pike和Ken Thompson三位Google工程师设计,旨在解决现代编程中的一些常见问题,如编译速度、运行效率和并发编程。主要特点:Go语言的语法简单、编译…...
Redis系列之淘汰策略介绍
Redis系列之淘汰策略介绍 文章目录 为什么需要Redis淘汰策略?Redis淘汰策略分类Redis数据淘汰流程源码验证淘汰流程Redis中的LRU算法Redis中的LFU算法 为什么需要Redis淘汰策略? 由于Redis内存是有大小的,当内存快满的时候,又没有…...
sql 调优
sql 调优 SQL调优是一个复杂的过程,涉及多个方面,包括查询优化、索引优化、表结构优化等。以下是一些基本的SQL调优策略: 使用索引:确保查询中涉及的列都有适当的索引。 查询优化:避免使用SELECT *,只选取…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
