当前位置: 首页 > news >正文

日常实习-小米计算机视觉算法岗面经

文章目录

  • 流程
  • 问题
    • 请你写出项目中用到的模型代码,Resnet50
      • (1)网络退化现象:把网络加深之后,效果反而变差了
      • (2)过拟合现象:训练集表现很棒,测试集很差
    • 把你做的工作里面的模型替换成ViT能行吗?
    • 有了解过Stable difussion,transformer吗?
  • 总结

流程

  • 自我介绍
  • 介绍项目
  • 介绍论文
  • 写代码

问题

请你写出项目中用到的模型代码,Resnet50

面试官:写出一个单元就好了。
实际面试过程中写出伪代码就好,
源代码:vision/torchvision/models/resnet.py

class BasicBlock(nn.Module):expansion: int = 1def __init__(self,inplanes: int,planes: int,stride: int = 1,downsample: Optional[nn.Module] = None,groups: int = 1,base_width: int = 64,dilation: int = 1,norm_layer: Optional[Callable[..., nn.Module]] = None,) -> None:super().__init__()if norm_layer is None:norm_layer = nn.BatchNorm2dif groups != 1 or base_width != 64:raise ValueError("BasicBlock only supports groups=1 and base_width=64")if dilation > 1:raise NotImplementedError("Dilation > 1 not supported in BasicBlock")# Both self.conv1 and self.downsample layers downsample the input when stride != 1self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = norm_layer(planes)self.relu = nn.ReLU(inplace=True)self.conv2 = conv3x3(planes, planes)self.bn2 = norm_layer(planes)self.downsample = downsampleself.stride = stridedef forward(self, x: Tensor) -> Tensor:identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out

里面的精华部分如下,我跳着写:

def __init__():self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = norm_layer(planes)self.relu = nn.ReLU(inplace = True)self.conv2 = conv3x3(planes, planes)self.bn2 = norm_layer(planes)self.downsample = downsampleself.stride = stridedef forward(self, x: Tensor) -> Tensor:identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out

在面试官的提示下我写了大概这样的伪代码:

def forward(x):identity = xout = conv2d(x)out = batchnorm(out)out = relu(out)out = conv2d(x)out = batchnorm(out)out += identityout = relu(out)return out

面试结果还没出,不保证我这样写是正确的!

进一步了解Resnet50,来自B站的同济子豪兄【精读AI论文】ResNet深度残差网络

  • 有几种不好的现象:

(1)网络退化现象:把网络加深之后,效果反而变差了

用人话说明:一个孩子报名了课外辅导班,结果不仅作业写得更差了,考试也更差了;(学多了反而导致结果更糟糕)

(2)过拟合现象:训练集表现很棒,测试集很差

用人话说明:一个孩子作业做的很棒,一上考场就发挥失常;

把你做的工作里面的模型替换成ViT能行吗?

有了解过Stable difussion,transformer吗?

有一点点
【渣渣讲课】试图做一个正常讲解Latent / Stable Diffusion的成年人

总结

一面会重点针对简历上写的论文和项目,以及考察一些和岗位相关的前沿知识,坐在实验室是绝对绝对感受不到这些的!要勇敢踏出第一步;


间隔2天,官网显示流程终止 ╥﹏╥…

相关文章:

日常实习-小米计算机视觉算法岗面经

文章目录 流程问题请你写出项目中用到的模型代码,Resnet50(1)网络退化现象:把网络加深之后,效果反而变差了(2)过拟合现象:训练集表现很棒,测试集很差 把你做的工作里面的…...

(C++)string模拟实现

string底层是一个是字符数组 为了跟库里的string区别,所以定义一个命名空间将类string包含 一、构造 1.构造函数 注意:将char*传给const char*是范围缩小,因此只能1:1构造一个 strlen遇到nullptr解引用会报错,因此…...

类和对象的学习总结(一)

面向对象和面向过程编程初步认识 C语言是面向过程的,关注过程(分析求解问题的步骤) 例如:外卖,关注点菜,接单,送单等 C是面向对象的,关注对象,把一件事拆分成不同的对象&…...

力扣22. 括号生成

数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。 示例 1:输入:n 3 输出:["((()))","(()())","(())()","()(())","()()(…...

检测窗口是否最大化兼容 Win10/11

检测窗口是否最大化(窗口覆盖或独占全屏)兼容 Win10/11 问题描述 在 Win10/11 上有很多 UWP 进程,检测窗口是否最大化将迎来新的挑战。这些窗口以其不能够使用 Win32 的 IsWindowVisible 获取窗口可见性为特征。此时,必须使用 D…...

【qsort函数】

前言 我们要学习qsort函数并利用冒泡函数仿照qsort函数 首先我们要了解一下qsort(快速排序) 这是函数的的基本参数 void qsort (void* base, size_t num, size_t size,int (*compar)(const void*,const void*)); 简单解释一下 base:指向…...

python类元编程示例-使用类型注解来检查转换属性值的类框架

用三种方式实现使用类型注解来检查转换属性值的类框架 1 __init_subclass__方式 1.1 代码实现 from collections.abc import Callable # <1> from typing import Any, NoReturn, get_type_hints from typing import Dict, Typeclass Field:def __init__(self, name: …...

Python3 笔记:字符串的 zfill() 和 rjust()

1、zfill() 方法返回指定长度的字符串&#xff0c;原字符串右对齐&#xff0c;前面填充0。 语法&#xff1a;str.zfill(width) width &#xff1a;指定字符串的长度。原字符串右对齐&#xff0c;前面填充0。 str1 2546 str2 2 print(str1.zfill(10)) # 运行结果&#xff1…...

SpringBoot项目启动提示端口号占用

Windows环境下&#xff0c;SpringBoot项目启动时报端口号占用&#xff1a; *************************** APPLICATION FAILED TO START ***************************Description:Web server failed to start. Port 8080 was already in use.Action:Identify and stop the proc…...

音视频开发23 FFmpeg 音频重采样

代码实现的功能 目的是 将&#xff1a; 一个采样率为 44100&#xff0c;采样通道为 2&#xff0c;格式为 AV_SAMPLE_FMT_DBL 的 in.pcm 数据 转换成 一个采样率为 48000&#xff0c;采样通道为 1&#xff0c;格式为 AV_SAMPLE_FMT_S16 的 out.pcm 数据 1.重采样 1.1 为什么要重…...

windows系统下安装fnm

由于最近做项目要切换多个node版本&#xff0c;查询了一下常用的有nvm和fnm这两种&#xff0c;对比了一下选择了fnm。 下载fnm 有两种方式&#xff0c;目前最新版本是1.37.0&#xff1a; 1.windows下打开powershell&#xff0c;执行以下命令下载fnm winget install Schniz.f…...

【Linux网络】传输层协议 - UDP

文章目录 一、传输层&#xff08;运输层&#xff09;运输层的特点复用和分用再谈端口号端口号范围划分认识知名端口号&#xff08;Well-Know Port Number&#xff09;两个问题① 一个进程是否可以绑定多个端口号&#xff1f;② 一个端口号是否可以被多个进程绑定&#xff1f; n…...

debugger(四):源代码

〇、前言 终于来到令人激动的源代码 level 了&#xff0c;这里将会有一些很有意思的算法&#xff0c;来实现源代码级别的调试&#xff0c;这将会非常有趣。 一、使用 libelfin 库 我们不可能直接去读取整个 .debug info 段来进行设置&#xff0c;这是没有必要的&#xff0c;…...

基于运动控制卡的圆柱坐标机械臂设计

1 方案简介 介绍一种基于运动控制卡制作一款scara圆柱坐标的机械臂设计方案&#xff0c;该方案控制器用运动控制卡制作一台三轴机械臂&#xff0c;用于自动抓取和放料操作。 2 组成部分 该机械臂的组成部分有研华运动控制卡&#xff0c;触摸屏&#xff0c;三轴圆柱坐标的平面运…...

MongoDBTemplate-基本文档查询

文章目录 流程概述步骤1&#xff1a;创建一个MongoDB的连接步骤2&#xff1a;创建一个查询对象Query步骤3&#xff1a;设置需要查询的字段步骤4&#xff1a;使用查询对象执行查询操作 流程概述 步骤描述步骤1创建一个MongoDB的连接步骤2创建一个查询对象Query步骤3设置需要查询…...

23种设计模式——创建型模式

设计模式 文章目录 设计模式创建型模式单例模式 [1-小明的购物车](https://kamacoder.com/problempage.php?pid1074)工厂模式 [2-积木工厂](https://kamacoder.com/problempage.php?pid1076)抽象⼯⼚模式 [3-家具工厂](https://kamacoder.com/problempage.php?pid1077)建造者…...

idm究竟有哪些优势

IDM&#xff08;Internet Download Manager&#xff09;是一款广受好评的下载管理工具&#xff0c;其主要优势包括&#xff1a; 高速下载&#xff1a;IDM支持最大32线程的下载&#xff0c;可以显著提升下载速度1。文件分类下载&#xff1a;IDM可以根据文件后缀进行分类&#x…...

如何学习Golang语言!

第一部分&#xff1a;Go语言概述 起源与设计哲学&#xff1a;Go语言由Robert Griesemer、Rob Pike和Ken Thompson三位Google工程师设计&#xff0c;旨在解决现代编程中的一些常见问题&#xff0c;如编译速度、运行效率和并发编程。主要特点&#xff1a;Go语言的语法简单、编译…...

Redis系列之淘汰策略介绍

Redis系列之淘汰策略介绍 文章目录 为什么需要Redis淘汰策略&#xff1f;Redis淘汰策略分类Redis数据淘汰流程源码验证淘汰流程Redis中的LRU算法Redis中的LFU算法 为什么需要Redis淘汰策略&#xff1f; 由于Redis内存是有大小的&#xff0c;当内存快满的时候&#xff0c;又没有…...

sql 调优

sql 调优 SQL调优是一个复杂的过程&#xff0c;涉及多个方面&#xff0c;包括查询优化、索引优化、表结构优化等。以下是一些基本的SQL调优策略&#xff1a; 使用索引&#xff1a;确保查询中涉及的列都有适当的索引。 查询优化&#xff1a;避免使用SELECT *&#xff0c;只选取…...

【UML用户指南】-13-对高级结构建模-包

目录 1、名称 2、元素 3、可见性 4、引入与引出 用包把建模元素安排成可作为一个组来处理的较大组块。可以控制这些元素的可见性&#xff0c;使一些元素在包外是可见的&#xff0c;而另一些元素要隐藏在包内。也可以用包表示系统体系结构的不同视图。 狗窝并不复杂&#x…...

前端面试题日常练-day63 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备&#xff0c;答案在文末 1. TypeScript中&#xff0c;以下哪个关键字用于声明一个类的构造函数&#xff1f; a) constructor b) init c) create d) initialize 2. 在TypeScript中&#xff0c;以下哪个符号用于声明可选的函…...

GAN的入门理解

这一篇主要是关于生成对抗网络的模型笔记&#xff0c;有一些简单的证明和原理&#xff0c;是根据李宏毅老师的课程整理的&#xff0c;下面有链接。本篇文章主要就是梳理基础的概念和训练过程&#xff0c;如果有什么问题的话也可以指出的。 李宏毅老师的课程链接 1.概述 GAN是…...

43【PS 作图】颜色速途

1 通过PS让画面细节模糊&#xff0c;避免被过多的颜色干扰 2 分析画面的颜色 3 作图 参考网站&#xff1a; 色感不好要怎么提升呢&#xff1f;分享一下我是怎么练习色感的&#xff01;_哔哩哔哩_bilibili https://www.bilibili.com/video/BV1h1421Z76p/?spm_id_from333.1007.…...

定个小目标之刷LeetCode热题(13)

今天来看看这道题&#xff0c;介绍两种解法 第一种动态规划&#xff0c;代码如下 class Solution {public int maxSubArray(int[] nums) {int pre 0, maxAns nums[0];for (int x : nums) {// 计算当前最大前缀和pre Math.max(pre x, x);// 更新最大前缀和maxAns Math.ma…...

【AI大模型】Prompt Engineering

目录 什么是提示工程&#xff08;Prompt Engineering&#xff09; Prompt 调优 Prompt 的典型构成 「定义角色」为什么有效&#xff1f; 防止 Prompt 攻击 攻击方式 1&#xff1a;著名的「奶奶漏洞」 攻击方式 2&#xff1a;Prompt 注入 防范措施 1&#xff1a;Prompt 注…...

centos安装vscode的教程

centos安装vscode的教程 步骤一&#xff1a;打开vscode官网找到历史版本 历史版本链接 步骤二&#xff1a;找到文件下载的位置 在命令行中输入&#xff08;稍等片刻即可打开&#xff09;&#xff1a; /usr/share/code/bin/code关闭vscode后&#xff0c;可在应用程序----编程…...

面试题------>MySQL!!!

一、连接查询 ①&#xff1a;左连接left join &#xff08;小表在左&#xff0c;大表在右&#xff09; ②&#xff1a;右连接right join&#xff08;小表在右&#xff0c;大表在左&#xff09; 二、聚合函数 SQL 中提供的聚合函数可以用来统计、求和、求最值等等 COUNT&…...

英伟达:史上最牛一笔天使投资

200万美元的天使投资&#xff0c;让刚成立就面临倒闭风险的英伟达由危转安&#xff0c;并由此缔造了一个2.8万亿美元的市值神话。 这是全球风投史上浓墨重彩的一笔。 前不久&#xff0c;黄仁勋在母校斯坦福大学的演讲中&#xff0c;提到了人生中的第一笔融资——1993年&#x…...

PDF分页处理:技术与实践

引言 在数字化办公和学习中&#xff0c;PDF文件因其便携性和格式稳定性而广受欢迎。然而&#xff0c;处理大型PDF文件时&#xff0c;我们经常需要将其拆分成单独的页面&#xff0c;以便于管理和分享。本文将探讨如何使用Python编程语言和一些流行的库来实现PDF文件的分页处理。…...

优化合作平台/电脑优化软件哪个好用

简介 LVM&#xff08;Logical Volume Manager&#xff09;逻辑卷管理&#xff0c;是在硬盘分区和文件系统之间添加的一个逻辑层&#xff0c;为文件系统屏蔽下层硬盘分区布局&#xff0c;并提供一个抽象的盘卷&#xff0c;在盘卷上建立文件系统。管理员利用LVM可以在硬盘不用重…...

手工艺品网站建设方案/百度官方客户端

雷雨中&#xff0c;若感到头、颈、身体有麻木的感觉&#xff0c;这是即将遭受雷击的先兆&#xff0c;应立即躺下&#xff01;&#xff08;因为电荷集中&#xff0c;说明电荷向你头部移动&#xff0c;雷下了来就冲电荷来&#xff0c;你不躺下你就是周围的避雷针了。电荷集中现象…...

wordpress特色图片/重庆seo关键词优化服务

ELK集群搭建 环境介绍 主机名备注web运行apache web服务node1作为elk节点1&#xff0c;kibana将安装在此节点node2作为elk节点2 所有主机修改主机名&#xff0c;以node1 [rootlocalhost ~]# hostnamectl set-hostname node1所有主机添加主机名解析 [rootlocalhost ~]# vim …...

论某政府网站职能建设/百度一下首页登录入口

/*************************************************************************************** linux 模拟生成 CAN 设备* 说明&#xff1a;* 最近在看CANopenSocket的过程中看到能够生成模拟的CAN设备&#xff0c;于是查了点资料&#xff0c;结…...

怎么做兼职类网站/seo优化工作怎么样

//一个游戏&#xff0c;前二十关是每关自身分数&#xff0c;21-30每关10分&#xff1b;31-40每关20&#xff1b;41-49每关30&#xff1b;50关100分 //输入你的关卡数&#xff0c;输出现在的分数 //两种做法&#xff1a;if 嵌套 for || for 嵌套 if //第一种&#xff1a;if 嵌套…...

建设部指定招标网站/站长之家ip地址查询

上一篇ESFramework扩展之EsfP2P &#xff0d;&#xff0d; 基于ESFramework的P2P实现 主要介绍了EsfP2P如何协助建立P2P Session&#xff0c;那只是整个故事的一半&#xff0c;EsfP2P主要职能的另一半是确保P2P消息的可靠传递。我们已经知道&#xff0c;目前的EsfP2P扩展的实现…...