当前位置: 首页 > news >正文

【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】线性分类模型损失函数对比

本节均以二分类问题为例进行展开,统一定义类别标签 y ∈ { + 1 , − 1 } y\in\{+1,-1\} y{+1,1},则分类正确时 y f ( x ; w ) > 0 yf(x;w)>0 yf(x;w)>0,且值越大越正确;错误时 y f ( x ; w ) < 0 yf(x;w)<0 yf(x;w)<0,且值越小越错误。不同损失函数间的损失随 y f ( x ; w ) yf(x;w) yf(x;w)变化如下图所示:
在这里插入图片描述

平方损失

L = ( y − f ( x ; w ) ) 2 = y 2 − 2 y f ( x ; w ) + f 2 ( x ; w ) = 1 − 2 y f ( x ; w ) + y 2 f 2 ( x ; w ) = ( 1 − y f ( x ; w ) ) 2 \begin{aligned} \mathcal{L} &=(y-f(x;w))^2 \\ &=y^2-2yf(x;w)+f^2(x;w) \\ &=1-2yf(x;w)+y^2f^2(x;w) \\ &=(1-yf(x;w))^2 \end{aligned} L=(yf(x;w))2=y22yf(x;w)+f2(x;w)=12yf(x;w)+y2f2(x;w)=(1yf(x;w))2
对于平方损失来说,当 y f ( x ; w ) < 1 yf(x;w)<1 yf(x;w)<1时,损失函数单调递减,此时如果用梯度下降进行优化,最终会收敛于点1。但当 y f ( x ; w ) > 1 yf(x;w)>1 yf(x;w)>1时,损失函数单调递减,同样在进行优化时还是会收敛于1,但事实上 y f ( x ; w ) yf(x;w) yf(x;w)越大说明分类越正确。因此可以说,平方损失不适合做分类任务。

Logistic回归的损失函数(交叉熵损失)

L = − I ( y = 1 ) log ⁡ σ ( f ( x ; w ) ) − I ( y = − 1 ) log ⁡ ( 1 − σ ( f ( x ; w ) ) ) = − I ( y = 1 ) log ⁡ σ ( f ( x ; w ) ) − I ( y = − 1 ) log ⁡ ( σ ( − f ( x ; w ) ) ) = − log ⁡ σ ( y f ( x ; w ) ) = log ⁡ σ − 1 ( y f ( x ; w ) ) = log ⁡ ( 1 + exp ⁡ ( − y f ( x ; w ) ) ) \begin{aligned} \mathcal{L} &=-I(y=1)\log\sigma(f(x;w))-I(y=-1)\log(1-\sigma(f(x;w)))\\ &=-I(y=1)\log\sigma(f(x;w))-I(y=-1)\log(\sigma(-f(x;w)))\\ &=-\log\sigma(yf(x;w))\\ &=\log\sigma^{-1}(yf(x;w))\\ &=\log(1+\exp(-yf(x;w))) \end{aligned} L=I(y=1)logσ(f(x;w))I(y=1)log(1σ(f(x;w)))=I(y=1)logσ(f(x;w))I(y=1)log(σ(f(x;w)))=logσ(yf(x;w))=logσ1(yf(x;w))=log(1+exp(yf(x;w)))
对于函数 σ ( x ) \sigma(x) σ(x),可证 1 − σ ( x ) = σ ( − x ) 1-\sigma(x)=\sigma(-x) 1σ(x)=σ(x),且 I I I是指示函数,
I ( y = 1 ) = 1 y = 1 = { 1 y = 1 0 y = − 1 I(y=1)=\mathbb{1}_{y=1}=\left\{\begin{aligned} &1&y=1\\\\ &0&y=-1 \end{aligned}\right. I(y=1)=1y=1= 10y=1y=1
I ( y = − 1 ) = 1 y = − 1 = { 1 y = − 1 0 y = 1 I(y=-1)=\mathbb{1}_{y=-1}=\left\{\begin{aligned} &1&y=-1\\\\ &0&y=1 \end{aligned}\right. I(y=1)=1y=1= 10y=1y=1
由图像可知,随着 y f ( x ; w ) yf(x;w) yf(x;w)的增大,函数损失逐渐减小最终趋于0。这样虽然满足了 y f ( x ; w ) yf(x;w) yf(x;w)越大分类效果越好的条件,但其实这是没必要的,因为当损失大于0时就可以完成分类任务。因此虽然说交叉熵损失可以满足分类要求,但造成了一些不必要的计算,仍然具有改进空间。

感知器的损失函数

L = max ⁡ ( 0 , − y f ( x ; w ) ) \mathcal{L}=\max(0,-yf(x;w)) L=max(0,yf(x;w))
感知器损失解决了交叉熵损失的问题。感知器损失是专门为分类而设计的损失函数,其结果与真实效果基本一致。

软间隔支持向量机的损失函数(Hinge损失)

L = max ⁡ ( 0 , 1 − y f ( x ; w ) ) \mathcal{L}=\max(0,1-yf(x;w)) L=max(0,1yf(x;w))
Hinge损失与感知器损失在几何上的不同仅仅在于Hinge损失在感知器损失的基础上向右平移了一个单位,这就导致了Hinge损失对距离分界面较近的样本( y f ( x ; w ) yf(x;w) yf(x;w)落在0到1之间)造成一定的惩罚。

结论

从模型健壮性角度来讲,选择支持向量机(Hinge损失)来解决一般分类问题的效果更好
各线性分类模型对比如下表所示
在这里插入图片描述

XOR问题

感知器和支持向量机虽然在线性可分问题上表现良好,但其无法解决非线性可分问题,例如XOR(异或)问题。
假设空间中有两个变量 ( x 1 , x 2 ) (x_1,x_2) (x1,x2),对两个变量分别取与、或、异或逻辑运算,结果如下图所示。
在这里插入图片描述

对于与运算和或运算产生的结果来说,总能找到一个分界面来把两类分开,也就是说这两个结果产生的数据集是线性可分的;但异或运算的结果无法直接找到一个分界面,也就是说它的结果数据是非线性可分的。XOR这类非线性可分问题是无法通过线性分类器来解决的。
要解决这类问题,可以借助使用”基函数“的广义线性模型,也就是把线性模型过一个基函数,让线性模型变为非线性的,也就是将 f ( x ) = w T x f(x)=w^Tx f(x)=wTx变成 f ( ϕ ( x ) ) = w T ϕ ( x ) f(\phi(x))=w^T\phi(x) f(ϕ(x))=wTϕ(x),这样就实现了将非线性可分的数据集映射到另一个空间中,映射的数据集在这个空间中是线性可分的。

以下图为例,
在这里插入图片描述

左图表示原来的数据集,可见该数据集是非线性可分的。但它有一个很明显的特征,对于这个数据集来说,可以找到一个中心点,计算样本到中心点的距离,使得中心点某个范围内的为一类,范围外的为另一类,这样就可以构建出一个特征函数,将原本非线性可分的数据集映射到线性可分的数据集上。(上面这个图是按照坐标(-1,-1)附近那个绿色中心点建立的,得到的结果就如右图所示)

相关文章:

【复旦邱锡鹏教授《神经网络与深度学习公开课》笔记】线性分类模型损失函数对比

本节均以二分类问题为例进行展开&#xff0c;统一定义类别标签 y ∈ { 1 , − 1 } y\in\{1,-1\} y∈{1,−1}&#xff0c;则分类正确时 y f ( x ; w ) > 0 yf(x;w)>0 yf(x;w)>0&#xff0c;且值越大越正确&#xff1b;错误时 y f ( x ; w ) < 0 yf(x;w)<0 yf(x;…...

数组(C语言)(详细过程!!!)

目录 数组的概念 一维数组 sizeof计算数组元素个数 二维数组 C99中的变⻓数组 数组的概念 数组是⼀组相同类型元素的集合。 数组分为⼀维数组和多维数组&#xff0c;多维数组⼀般比较多见的是二维数组。 从这个概念中我们就可以发现2个有价值的信息&#xff1a;(1)数…...

视频生成模型 Dream Machine 开放试用;微软将停止 Copilot GPTs丨 RTE 开发者日报 Vol.224

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE&#xff08;Real-Time Engagement&#xff09; 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…...

Vue30-自定义指令:对象式

一、需求&#xff1a;创建fbind指定 要用js代码实现自动获取焦点的功能&#xff01; 二、实现 2-1、步骤一&#xff1a;绑定元素 2-2、步骤二&#xff1a;input元素获取焦点 此时&#xff0c;页面初始化的时候&#xff0c;input元素并没有获取焦点&#xff0c;点击按钮&…...

2024/06/13--代码随想录算法(贪心)3/6|134.加油站、135.分发糖果、860.柠檬水找零、406.根据身高重建队列

134.加油站 力扣链接 class Solution:def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:curSum 0 # 当前累计的剩余油量totalSum 0 # 总剩余油量start 0 # 起始位置for i in range(len(gas)):curSum gas[i] - cost[i]totalSum gas[i] - co…...

机器学习的分类

机器学习分类 ​ 机器学习是人工智能的一个分支&#xff0c;它使计算机系统能够从数据中学习并做出决策或预测。机器学习&#xff08;Machine Learning&#xff09;是一种基于数据驱动的方法&#xff0c;旨在通过自动化的统计模型和算法从数据中学习和提取模式&#xff0c;以进…...

【Linux】进程控制3——进程程序替换

一&#xff0c;前言 创建子进程的目的之一就是为了代劳父进程执行父进程的部分代码&#xff0c;也就是说本质上来说父子进程都是执行的同一个代码段的数据&#xff0c;在子进程修改数据的时候进行写时拷贝修改数据段的部分数据。 但是还有一个目的——将子进程在运行时指向一个…...

PFC旁路二极管、继电器驱动电路以及PFC主功率

R001和R002以及R003三个电阻作用是限放X电容上的电 整流桥串联两个BJ1和BJ2 电容C3:给整流桥储能&#xff0c;给后续llc供电 PFC工作是正弦波上叠加高频电流 PFC功率部分 2个PFC电感&#xff08;选择两个磁芯骨架小&#xff0c;有利于散热&#xff09;、2个续流二极管&…...

CrossOver 2024软件下载-CrossOver 2024详细安装教程

Crossover软件是一款可以在Mac、Linux和Chromebook上运行Windows程序的软件。 它是一款商业软件&#xff0c;由CodeWeavers公司开发&#xff0c;Crossover不是一个虚拟机或模拟器&#xff0c;它使用Wine技术来将Windows程序直接转换成可以在其他操作系统上运行的程序&#xff0…...

Spark MLlib机器学习

前言 随着大数据时代的到来&#xff0c;数据处理和分析的需求急剧增加&#xff0c;传统的数据处理工具已经难以满足海量数据的分析需求。Apache Spark作为一种快速、通用的集群计算系统&#xff0c;迅速成为了大数据处理的首选工具。而在Spark中&#xff0c;MLlib&#xff08;…...

React Native将 ipad 端软件设置为横屏显示后关闭 Modal 弹窗报错

问题&#xff1a; 将 ipad 端软件设置为横屏显示后&#xff0c;关闭 Modal 弹窗报错。 Modal was presented with 0x2 orientations mask but the application only supports 0x18.Add more interface orientations to your apps Info.plist to fix this.NOTE: This will cras…...

JavaEE大作业之班级通讯录系统(前端HTML+后端JavaEE实现)PS:也可选网络留言板、图书借阅系统、寝室管理系统

背景&#xff1a; 题目要求&#xff1a; 题目一&#xff1a;班级通讯录【我们选这个】 实现一个B/S结构的电子通讯录&#xff0c;其中的每条记录至少包含学号、姓名、性别、班级、手机号、QQ号、微信号&#xff0c;需要实现如下功能&#xff1a; &#xff08;1&#xff09;…...

代码随想录算法训练营第37天|● 56.合并区间● 738.单调递增的数字

合并区间 56. 合并区间 - 力扣&#xff08;LeetCode&#xff09; 按照左边界从小到大排序之后&#xff0c;如果 intervals[i][0] < intervals[i - 1][1] 即intervals[i]的左边界 < intervals[i - 1]的右边界&#xff0c;则一定有重叠。&#xff08;本题相邻区间也算重贴…...

SQL Server中的CTE和临时表优化

在SQL Server中&#xff0c;优化查询性能是数据库管理的核心任务之一。使用公用表表达式&#xff08;CTE&#xff09;和临时表是两种重要的技术手段。本文将深入探讨CTE如何简化代码&#xff0c;以及临时表如何优化查询性能。通过实例和详尽解释&#xff0c;我们将展示这两种技…...

CCRC信息安全服务资质认证是什么

什么是CCRC认证&#xff1f; CCRC 全称 China Cybersecurity Review Technology and Certification Center。CCRC认证是指中国网络安全审查技术与认证中心进行的信息安全服务资质认证。简称信息安全服务资质认证。 CCRC&#xff0c;即中国网络安全审查技术与认证中心&#xff0…...

第五十一天 | 1143.最长公共子序列

题目&#xff1a;1143.最长公共子序列718.最长重复子数组的区别是&#xff0c;子序列不要求连续&#xff0c;子数组要求连续。这一差异体现在dp数组含义和递推公式中&#xff0c;本题是子序列&#xff0c;那就要考虑上nums1[i - 1] ! nums2[j - 1]的情况。 本道题与 1.dp数组…...

未来的5-10年,哪些行业可能会被AI代替?

在未来的5-10年&#xff0c;多个行业可能会受到AI技术的影响&#xff0c;其中一些工作可能会被AI所代替。以下是对可能被AI替代的行业及工作的一些概述&#xff1a; 客户服务与代表&#xff1a;随着AI技术的发展&#xff0c;特别是自动话术对话和语音生成技术的进步&#xff0…...

据报道,FTC 和 DOJ 对微软、OpenAI 和 Nvidia 展开反垄断调查

据《纽约时报》报道&#xff0c;联邦贸易委员会 (FTC) 和司法部 (DOJ) 同意分担调查微软、OpenAI 和 Nvidia 潜在反垄断违规行为的职责。 美国司法部将牵头对英伟达进行调查&#xff0c;而联邦贸易委员会将调查 OpenAI 与其最大投资者微软之间的交易。 喜好儿网 今年 1 月&a…...

人工智能发展历程和工具搭建学习

目录 人工智能的三次浪潮 开发环境介绍 Anaconda Anaconda的下载和安装 下载说明 安装指导 模块介绍 使用Anaconda Navigator Home界面介绍 Environment界面介绍 使用Jupter Notebook 打开Jupter Notebook 配置默认目录 新建文件 两种输入模式 Conda 虚拟环境 添…...

Dijkstra算法的原理

Dijkstra算法的原理可以清晰地分为以下几个步骤和要点&#xff1a; 初始化&#xff1a; 引入一个辅助数组D&#xff0c;其中D[i]表示从起始点&#xff08;源点&#xff09;到顶点i的当前已知最短距离。如果起始点与顶点i之间没有直接连接&#xff0c;则D[i]被初始化为无穷大&a…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...