深度学习:使用argparse 模块
在深度学习中,结合 Bash 脚本和 argparse
模块,可以实现高效的任务自动化和参数管理。Bash 脚本可以用来调度任务和管理环境,而 argparse
模块可以用来解析命令行参数,控制深度学习模型的训练和评估过程。
1.argparse
模块
argparse
模块是 Python 标准库中的一个模块,用于解析命令行参数。它可以帮助开发者轻松地编写用户友好的命令行接口,使得程序可以通过命令行参数来接受用户输入,并根据这些输入执行相应的功能。
argparse
模块的主要功能
- 定义命令行参数:可以定义位置参数和可选参数,以及它们的类型、默认值和帮助信息。
- 解析命令行参数:自动解析命令行输入,并将其转换为相应的数据类型。
- 生成帮助和使用信息:自动生成帮助信息,用户可以通过
-h
或--help
选项查看。
使用 argparse
模块的步骤
- 创建 ArgumentParser 对象:这是解析器的核心对象。
- 添加参数:使用
add_argument
方法添加命令行参数。 - 解析参数:使用
parse_args
方法解析命令行输入。 - 使用参数:解析后的参数可以作为属性访问并在程序中使用。
示例代码
下面是一个使用 argparse
模块的基本示例:
import argparsedef main():# 创建 ArgumentParser 对象parser = argparse.ArgumentParser(description='这是一个示例程序')# 添加参数parser.add_argument('filename', type=str, help='文件的名称')parser.add_argument('--verbose', '-v', action='store_true', help='输出详细信息')parser.add_argument('--count', '-c', type=int, default=1, help='重复次数')# 解析参数args = parser.parse_args()# 使用参数if args.verbose:print(f'Processing file: {args.filename}')print(f'Repeat count: {args.count}')# 模拟处理文件for i in range(args.count):print(f'Processing {args.filename} - iteration {i + 1}')if __name__ == '__main__':main()
运行命令:
python script.py example.txt -v -c 3
输出示例:
Processing file: example.txt
Repeat count: 3
Processing example.txt - iteration 1
Processing example.txt - iteration 2
Processing example.txt - iteration 3
参数类型
- 位置参数:必须提供,按位置传递。例如,上面的
filename
。 - 可选参数:不必须提供,通常以
--
或-
开头,例如--verbose
和--count
。
处理布尔选项
布尔选项通常使用 action='store_true'
或 action='store_false'
:
parser.add_argument('--verbose', '-v', action='store_true', help='输出详细信息')
设置默认值
可以使用 default
参数来设置默认值:
parser.add_argument('--count', '-c', type=int, default=1, help='重复次数')
帮助信息
argparse
会自动生成帮助信息。用户可以使用 -h
或 --help
选项来查看:
python script.py -h
输出:
usage: script.py [-h] [--verbose] [--count COUNT] filename这是一个示例程序positional arguments:filename 文件的名称optional arguments:-h, --help show this help message and exit--verbose, -v 输出详细信息--count COUNT, -c 重复次数
子命令
通过 add_subparsers
方法,可以轻松地处理子命令:
import argparsedef main():parser = argparse.ArgumentParser(description='带有子命令的示例程序')# 添加子命令解析器subparsers = parser.add_subparsers(dest='command', help='子命令')# 添加子命令 'foo'parser_foo = subparsers.add_parser('foo', help='foo 子命令的帮助信息')parser_foo.add_argument('--bar', type=int, required=True, help='bar 参数')# 添加子命令 'baz'parser_baz = subparsers.add_parser('baz', help='baz 子命令的帮助信息')parser_baz.add_argument('--qux', type=str, help='qux 参数')# 解析参数args = parser.parse_args()# 处理子命令if args.command == 'foo':print(f'执行 foo 子命令,bar 参数值为 {args.bar}')elif args.command == 'baz':print(f'执行 baz 子命令,qux 参数值为 {args.qux}')else:parser.print_help()if __name__ == '__main__':main()
运行命令:
python script.py foo --bar 123
python script.py baz --qux hello
输出示例:
执行 foo 子命令,bar 参数值为 123
执行 baz 子命令,qux 参数值为 hello
总结
argparse
模块是一个强大的工具,用于解析命令行参数,提供了丰富的功能来处理不同类型的参数和选项,使得命令行工具的开发更加简便和灵活。通过定义和解析参数,开发者可以方便地从命令行获取用户输入,并在程序中使用这些输入来执行相应的操作。
2. 使用argparse
模块
python3 utils/create_indexes.py create_indexes \--waveforms_hdf5_path=$WORKSPACE"/hdf5s/waveforms/eval.h5" \--indexes_hdf5_path=$WORKSPACE"/hdf5s/indexes/eval.h5
这段代码使用 argparse
模块解析命令行参数,并执行指定的操作。具体来说,代码的作用是调用一个 Python 脚本 create_indexes.py
,执行 create_indexes
子命令,并传递两个参数:waveforms_hdf5_path
和 indexes_hdf5_path
。下面详细分析这段代码的各个部分。
代码拆解和分析
1. 调用 Python 脚本
python3 utils/create_indexes.py create_indexes
2. 传递命令行参数
--waveforms_hdf5_path=$WORKSPACE"/hdf5s/waveforms/eval.h5" \
--indexes_hdf5_path=$WORKSPACE"/hdf5s/indexes/eval.h5"
这部分代码传递了两个命令行参数:
--waveforms_hdf5_path
:指定包含波形数据的 HDF5 文件路径。--indexes_hdf5_path
:指定要生成的索引 HDF5 文件路径。
这两个路径是基于环境变量 WORKSPACE
构建的,$WORKSPACE
变量表示工作空间的路径。
环境变量和路径拼接
假设 WORKSPACE
变量的值为 "/home/user/project"
,则上述路径在运行时会被解析为:
--waveforms_hdf5_path="/home/user/project/hdf5s/waveforms/eval.h5"
--indexes_hdf5_path="/home/user/project/hdf5s/indexes/eval.h5"
create_indexes.py
脚本的实现
为了更好地理解这段代码,我们需要假设 create_indexes.py
的部分实现。通常,这个脚本会使用 argparse
模块解析命令行参数,并根据参数调用相应的函数。
示例的 create_indexes.py
实现
import argparsedef create_indexes(args):waveforms_hdf5_path = args.waveforms_hdf5_pathindexes_hdf5_path = args.indexes_hdf5_path# 假设有一个函数 load_waveforms 用于加载波形数据waveforms = load_waveforms(waveforms_hdf5_path)# 假设有一个函数 create_and_save_indexes 用于创建索引并保存到 HDF5 文件create_and_save_indexes(waveforms, indexes_hdf5_path)def load_waveforms(path):# 从 HDF5 文件中加载波形数据的示例实现import h5pywith h5py.File(path, 'r') as f:waveforms = f['waveforms'][:]return waveformsdef create_and_save_indexes(waveforms, path):# 创建索引并保存到 HDF5 文件的示例实现import h5pyindexes = generate_indexes(waveforms) # 生成索引的示例函数with h5py.File(path, 'w') as f:f.create_dataset('indexes', data=indexes)def generate_indexes(waveforms):# 假设生成索引的示例实现indexes = [i for i in range(len(waveforms))]return indexesif __name__ == '__main__':parser = argparse.ArgumentParser(description='创建索引')subparsers = parser.add_subparsers(dest='mode')parser_create_indexes = subparsers.add_parser('create_indexes')parser_create_indexes.add_argument('--waveforms_hdf5_path', type=str, required=True, help='波形数据 HDF5 文件的路径')parser_create_indexes.add_argument('--indexes_hdf5_path', type=str, required=True, help='索引 HDF5 文件的路径')args = parser.parse_args()if args.mode == 'create_indexes':create_indexes(args)else:raise ValueError('不支持的子命令')
运行代码时的过程
-
执行命令行:执行命令行
python3 utils/create_indexes.py create_indexes --waveforms_hdf5_path="/home/user/project/hdf5s/waveforms/eval.h5" --indexes_hdf5_path="/home/user/project/hdf5s/indexes/eval.h5"
。 -
解析参数:
argparse
模块解析命令行参数,将waveforms_hdf5_path
和indexes_hdf5_path
的值存储在args
对象中。 -
调用函数:根据子命令
create_indexes
,调用create_indexes(args)
函数。 -
加载波形数据:在
create_indexes
函数中,调用load_waveforms
函数从指定的 HDF5 文件中加载波形数据。 -
创建并保存索引:调用
create_and_save_indexes
函数,根据波形数据生成索引,并将索引保存到指定的 HDF5 文件中。
总结
这段代码展示了如何使用 argparse
模块解析命令行参数并执行特定操作。通过结合命令行参数和脚本逻辑,可以方便地实现复杂的任务自动化流程。上述示例详细解释了命令行参数的传递和处理方式,有助于更好地理解和使用 argparse
模块。
相关文章:
深度学习:使用argparse 模块
在深度学习中,结合 Bash 脚本和 argparse 模块,可以实现高效的任务自动化和参数管理。Bash 脚本可以用来调度任务和管理环境,而 argparse 模块可以用来解析命令行参数,控制深度学习模型的训练和评估过程。 1.argparse 模块 argp…...
unity text根据文本内容自动设置高度
我们经常会遇到需要根据文字数量动态修改文本框高度的需求,我们可以使用文本的行数*每行的高度来计算文本框的高度,伪代码如下: int oneLineHight 50;// 每行的像素高度 private void ResetTextHight(string str) {//设置文字内容ShowText.…...
ARM 汇编 C语言 for循环
在使用 Keil 编译基于 STM32F103 的 C 语言程序时,生成的汇编代码会有一些不同。STM32F103 是基于 ARM Cortex-M3 内核的微控制器,因为汇编语言是 ARM 汇编,而不是 x86 汇编。 示例 C 代码 假设我们有如下的简单 C 语言 for 循环代码&#x…...

java:【@ComponentScan】和【@SpringBootApplication】扫包范围的冲突
# 代码结构如下: 注意【com.chz.myBean.branch】和【com.chz.myBean.main】这两个包是没有生重叠的。 主程序【MyBeanTest1、MyBeanTest2、MyBeanTest3】这两个类是在包【com.chz.myBean.main】下 # 示例代码 【pom.xml】 <dependency><groupId>org.…...

本学期嵌入式期末考试的综合项目,我是这么出题的
时间过得真快,临近期末,又到了老师出卷的时候。作为《嵌入式开发及应用》这门课的主讲教师,今年给学生出的题目有一点点难度,最后的综合项目要求如下所示,各位学生朋友和教师同行可以评论一下难度如何,单片…...

CSS概述
CSS是一种样式表语言,用于为HTML文档控制外观,定义布局。例如, CSS涉及字体、颜色、边距、高度、宽度、背景图像、高级定位等方面 。 ● 可将页面的内容与表现形式分离,页面内容存放在HTML文档中,而用 于定义表现形式…...

Tensorflow-GPU工具包了解和详细安装方法
目录 基础知识信息了解 显卡算力 CUDA兼容 Tensorflow gpu安装 CUDA/cuDNN匹配和下载 查看Conda driver的版本 下载CUDA工具包 查看对应cuDNN版本 下载cuDNN加速库 CUDA/cuDNN安装 CUDA安装方法 cuDNN加速库安装 配置CUDA/cuDNN环境变量 配置环境变量 核验是否安…...

【python】OpenCV GUI——Trackbar(14.2)
学习来自 OpenCV基础(12)OpenCV GUI中的鼠标和滑动条 文章目录 GUI 滑条介绍cv2.createTrackbar 介绍牛刀小试 GUI 滑条介绍 GUI滑动条是一种直观且快速的调节控件,主要用于改变一个数值或相对值。以下是关于GUI滑动条的详细介绍:…...

Qt自定义日志输出
Qt自定义日志输出 简略版: #include <QApplication> #include <QDebug> #include <QDateTime> #include <QFileInfo> // 将日志类型转换为字符串 QString typeToString(QtMsgType type) {switch (type) {case QtDebugMsg: return "D…...

[C++] vector list 等容器的迭代器失效问题
标题:[C] 容器的迭代器失效问题 水墨不写bug 正文开始: 什么是迭代器? 迭代器是STL提供的六大组件之一,它允许我们访问容器(如vector、list、set等)中的元素,同时提供一个遍历容器的方法。然而…...

Java——变量作用域和生命周期
一、作用域 1、作用域简介 在Java中,作用域(Scope)指的是变量、方法和类在代码中的可见性和生命周期。理解作用域有助于编写更清晰、更高效的代码。 2、作用域 块作用域(Block Scope): 块作用域是指在…...

WPF界面设计
1、使用C#-WPF实现抽屉效果-炫酷漂亮的侧边栏导航菜单-SplitViewMD主题重绘原生控件的美观效果-提供源码Demo下载 码源地址:https://download.csdn.net/download/Prince999999/89424685 2、使用C#-WPF实现抽屉效果-菜单导航功能实现,常规的管理系统应该…...

【C#】使用JavaScriptSerializer序列化对象
在C#开发语言编程中,通常使用系统内置的JavaScriptSerializer类来序列化对象,以便将其转换为JSON格式的文本存储与后台服务通信, 在这里将为大家详细介绍一下这个过程。 文章目录 反序列化序列化忽略属性 假设处理的数据中有一个对象类, 如下 public cl…...

HTML静态网页成品作业(HTML+CSS)—— 明星吴磊介绍网页(5个页面)
🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,未使用Javacsript代码,共有5个页面。 二、作品演示 三、代…...

EasyRecovery2024数据恢复神器#电脑必备良品
EasyRecovery数据恢复软件,让你的数据重见天日! 大家好!今天我要给大家种草一个非常实用的软件——EasyRecovery数据恢复软件!你是不是也曾经遇到过不小心删除了重要的文件,或者电脑突然崩溃导致数据丢失的尴尬情况呢&…...
前端HTML相关知识
1.什么是HTML HTML 指的是超文本标记语言 ( HyperText Markup Language )。 超文本:是指页面内可以包含图片、链接、声音,视频等内容 标记:标签(通过标记符号来告诉浏览器网页内容该如何显示) 浏览器根据不同的HTML标签,解析成我们看到的网页 2.HTML的特点 HTML不…...

集合面试题
目录 ①HashMap的理解?以及为什么要把链表转换为红黑树?②HashMap的put?③HashMap的扩容?④加载因子为什么是0.75?⑤modcount的作用?⑥HashMap与HashTable的区别?⑥HashMap中1.7和1.8的区别&am…...

集成学习概述
概述 集成学习(Ensemble learning)就是将多个机器学习模型组合起来,共同工作以达到优化算法的目的。具体来讲,集成学习可以通过多个学习器相结合,来获得比单一学习器更优越的泛化性能。集成学习的一般步骤为:1.生产一组“个体学习…...

记录一次root过程
设备: Redmi k40s 第一步, 解锁BL(会重置手机系统!!!所有数据都会没有!!!) 由于更新了澎湃OS系统, 解锁BL很麻烦, 需要社区5级以上还要答题。 但是,这个手机…...

函数(上)(C语言)
函数(上) 一. 函数的概念二. 函数的使用1. 库函数和自定义函数(1) 库函数(2) 自定义函数的形式 2. 形参和实参3. return语句4. 数组做函数参数 一. 函数的概念 数学中我们其实就见过函数的概念,比如:一次函数ykxb,k和b都是常数&a…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...