矩阵补全IGMC 学习笔记
目录
Inductive Graph-based Matrix Completion (IGMC) 模型
igmc推理示例:
Inductive Graph-based Matrix Completion (IGMC) 模型
原版代码:
IGMC/models.py at master · muhanzhang/IGMC · GitHub
GNN推理示例
torch_geometric版本:torch_geometric-2.5.3
原版报错,edge_type找不到,通过删除参数修正的:
import torch
import torch.nn.functional as F
from torch.nn import Linear
from torch_geometric.nn import GCNConv, global_add_pool
from torch_geometric.utils import dropout_adj
from torch_geometric.data import Data, DataLoader
class GNN(torch.nn.Module):# a base GNN class, GCN message passing + sum_poolingdef __init__(self, dataset, gconv=GCNConv, latent_dim=[32, 32, 32, 1],regression=False, adj_dropout=0.2, force_undirected=False):super(GNN, self).__init__()self.regression = regressionself.adj_dropout = adj_dropoutself.force_undirected = force_undirectedself.convs = torch.nn.ModuleList()self.convs.append(gconv(dataset.num_features, latent_dim[0]))for i in range(0, len(latent_dim)-1):self.convs.append(gconv(latent_dim[i], latent_dim[i+1]))self.lin1 = Linear(sum(latent_dim), 128)if self.regression:self.lin2 = Linear(128, 1)else:self.lin2 = Linear(128, dataset.num_classes)def reset_parameters(self):for conv in self.convs:conv.reset_parameters()self.lin1.reset_parameters()self.lin2.reset_parameters()def forward(self, data):x, edge_index, batch = data.x, data.edge_index, data.batchif self.adj_dropout > 0:edge_index, _ = dropout_adj(edge_index, p=self.adj_dropout,force_undirected=self.force_undirected, num_nodes=len(x),training=self.training)concat_states = []for conv in self.convs:x = torch.tanh(conv(x, edge_index))concat_states.append(x)concat_states = torch.cat(concat_states, 1)x = global_add_pool(concat_states, batch)x = F.relu(self.lin1(x))x = F.dropout(x, p=0.5, training=self.training)x = self.lin2(x)if self.regression:return x[:, 0]else:return F.log_softmax(x, dim=-1)def __repr__(self):return self.__class__.__name__# 创建一个简单的数据类,用于模拟数据集属性
class SimpleDataset:num_features = 2num_classes = 2# 创建一个简单的图数据集
edge_index = torch.tensor([[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long)
x = torch.tensor([[1, 0], [0, 1], [1, 0], [0, 1]], dtype=torch.float)
batch = torch.tensor([0, 0, 1, 1], dtype=torch.long)# 使用 Data 类构建图数据
data = Data(x=x, edge_index=edge_index, batch=batch)# 构建 DataLoader
loader = DataLoader([data], batch_size=2, shuffle=False)dataset = SimpleDataset()# 实例化模型
model = GNN(dataset)# 模型推理
model.eval()
for data in loader:out = model(data)print(out)
igmc推理示例:
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Linear, Conv1d
from torch_geometric.nn import GCNConv, RGCNConv, global_sort_pool, global_add_pool
from torch_geometric.utils import dropout_adj
from util_functions import *
import pdb
import time
from torch_geometric.data import Data, DataLoader
class GNN(torch.nn.Module):# a base GNN class, GCN message passing + sum_poolingdef __init__(self, dataset, gconv=GCNConv, latent_dim=[32, 32, 32, 1],regression=False, adj_dropout=0.2, force_undirected=False):super(GNN, self).__init__()self.regression = regressionself.adj_dropout = adj_dropoutself.force_undirected = force_undirectedself.convs = torch.nn.ModuleList()self.convs.append(gconv(dataset.num_features, latent_dim[0]))for i in range(0, len(latent_dim)-1):self.convs.append(gconv(latent_dim[i], latent_dim[i+1]))self.lin1 = Linear(sum(latent_dim), 128)if self.regression:self.lin2 = Linear(128, 1)else:self.lin2 = Linear(128, dataset.num_classes)def reset_parameters(self):for conv in self.convs:conv.reset_parameters()self.lin1.reset_parameters()self.lin2.reset_parameters()def forward(self, data):x, edge_index, batch = data.x, data.edge_index, data.batchif self.adj_dropout > 0:# edge_index, edge_type = dropout_adj(# edge_index, edge_type, p=self.adj_dropout,# force_undirected=self.force_undirected, num_nodes=len(x),# training=self.training# )edge_index, edge_type = dropout_adj(edge_index, p=self.adj_dropout, force_undirected=self.force_undirected, num_nodes=len(x), training=self.training)concat_states = []for conv in self.convs:x = torch.tanh(conv(x, edge_index))concat_states.append(x)concat_states = torch.cat(concat_states, 1)x = global_add_pool(concat_states, batch)x = F.relu(self.lin1(x))x = F.dropout(x, p=0.5, training=self.training)x = self.lin2(x)if self.regression:return x[:, 0]else:return F.log_softmax(x, dim=-1)def __repr__(self):return self.__class__.__name__
class IGMC(GNN):# The GNN model of Inductive Graph-based Matrix Completion.# Use RGCN convolution + center-nodes readout.def __init__(self, dataset, gconv=RGCNConv, latent_dim=[32, 32, 32, 32],num_relations=5, num_bases=2, regression=False, adj_dropout=0.2,force_undirected=False, side_features=False, n_side_features=0,multiply_by=1):super(IGMC, self).__init__(dataset, GCNConv, latent_dim, regression, adj_dropout, force_undirected)self.multiply_by = multiply_byself.convs = torch.nn.ModuleList()self.convs.append(gconv(dataset.num_features, latent_dim[0], num_relations, num_bases))for i in range(0, len(latent_dim)-1):self.convs.append(gconv(latent_dim[i], latent_dim[i+1], num_relations, num_bases))self.lin1 = Linear(2*sum(latent_dim), 128)self.side_features = side_featuresif side_features:self.lin1 = Linear(2*sum(latent_dim)+n_side_features, 128)def forward(self, data):start = time.time()x, edge_index, edge_type, batch = data.x, data.edge_index, data.edge_type, data.batchif self.adj_dropout > 0:edge_index, edge_type = dropout_adj(edge_index, edge_type, p=self.adj_dropout,force_undirected=self.force_undirected, num_nodes=len(x),training=self.training)concat_states = []for conv in self.convs:x = torch.tanh(conv(x, edge_index, edge_type))concat_states.append(x)concat_states = torch.cat(concat_states, 1)users = data.x[:, 0] == 1items = data.x[:, 1] == 1x = torch.cat([concat_states[users], concat_states[items]], 1)if self.side_features:x = torch.cat([x, data.u_feature, data.v_feature], 1)x = F.relu(self.lin1(x))x = F.dropout(x, p=0.5, training=self.training)x = self.lin2(x)if self.regression:return x[:, 0] * self.multiply_byelse:return F.log_softmax(x, dim=-1)class SimpleDataset:num_features = 2num_classes = 2# 创建一个简单的图数据集
edge_index = torch.tensor([[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long)
edge_type = torch.tensor([0, 1, 2, 3], dtype=torch.long)
x = torch.tensor([[1, 0], [0, 1], [1, 0], [0, 1]], dtype=torch.float)
batch = torch.tensor([0, 0, 1, 1], dtype=torch.long)# 使用 Data 类构建图数据
data = Data(x=x, edge_index=edge_index,edge_type=edge_type, batch=batch)# 构建 DataLoader
loader = DataLoader([data], batch_size=2, shuffle=False)dataset = SimpleDataset()# 实例化模型
model = IGMC(dataset)# 模型推理
model.eval()
for data in loader:out = model(data)print(out)
相关文章:
矩阵补全IGMC 学习笔记
目录 Inductive Graph-based Matrix Completion (IGMC) 模型 igmc推理示例: Inductive Graph-based Matrix Completion (IGMC) 模型 原版代码: IGMC/models.py at master muhanzhang/IGMC GitHub GNN推理示例 torch_geometric版本:tor…...
面试题之CSS
1. 引入样式的方式 外部样式 link import 区别 内部样式 /* 写在头部标签 */ <style></style>行内样式 2. 三行代码画三角形 .triangle{width:0px;border:100px solid;border-color:transparent transparent transparent red; }3.属性的继承 可继承的属性 …...
MFC扩展库BCGControlBar Pro v35.0新版亮点:重新设计的工具栏编辑器等
BCGControlBar库拥有500多个经过全面设计、测试和充分记录的MFC扩展类。 我们的组件可以轻松地集成到您的应用程序中,并为您节省数百个开发和调试时间。 BCGControlBar专业版 v35.0已全新发布了,这个版本改进类Visual Studio 2022的视觉主题、增强对多个…...
python调用SDK的问题
问题:Could not find module MvCameraControl.dll 原因:识别环境变量runtime异常 解决:指定具体绝对地址即可。MvCameraControl.dll的位置C:\Program Files (x86)\Common Files\MVS\Runtime\Win64_x64 MvCamCtrldll WinDLL("MvCamer…...
html入门综合练习
综合练习 通过实际项目练习可以更好地理解和掌握HTML、CSS和JavaScript。以下是几个综合练习项目的建议: 项目1:个人简历网页 创建一个包含以下内容的个人简历网页: 个人简介(姓名、照片、联系方式)教育背景工作经…...
函数模板的具体化
函数模板优点是通用性,可以解决某个方面的普遍性问题,但是这个世界上的事情不是绝对的,有普遍的,就有绝对的。举个栗子: #include <iostream> using namespace std; template <typename T> void Swap(T &…...
【Linux 内存管理】
文章目录 1. 为什么要有虚拟内存呢?🔍 1. 为什么要有虚拟内存呢?🔍...
AJAX 数据库
AJAX 数据库 1. 引言 AJAX(Asynchronous JavaScript and XML)是一种流行的网络开发技术,它允许网页在不重新加载整个页面的情况下与服务器交换数据和更新部分网页内容。AJAX技术与数据库的结合,为现代网络应用提供了更加丰富和动态的用户体验。本文将探讨AJAX如何与数据库…...
力扣719.找出第K小的数对距离
力扣719.找出第K小的数对距离 二分答案 朴素版 双指针遍历数组 超过界限break auto check [&](int mid) -> bool{int res0;for(int i0;i<n-1;i)for(int ji1;j<n;j){if(nums[j] - nums[i] > mid) break;elseif(res > k) return true;}return false;};优…...
富格林:掌握可信出金交易策略
富格林认为,黄金市场是起起落落,似乎机遇无处不在,但很少有人能真正抓住机遇。黄金可以做多也可以做空,做空主要是为了从黄金价格波动的价差中获利。只有采用正规可信的操作技巧,才能实现顺利获利出金,减少…...
HCS-华为云Stack-容器网络
HCS-华为云Stack-容器网络 容器隧道overlay VPC网络...
【CSS in Depth2精译】1.1 层叠
CSS 本质上就是声明规则,并让这些特定的规则在各种情况下生效。一个类添加到某个元素上,则应用这个类包含的这一些样式;元素 X 是元素 Y 的一个子节点,则应用另一些样式。浏览器于是根据这些规则,判定所有样式生效的具…...
【读博日记】拓扑结构(待修正)
Topology 拓扑学 内容来源于互联网,还在甄别中——20240617 拓扑结构指把实体抽象成与其形状大小无关的点,把连接实体的线路抽象成线,再研究这些电线之间的关系。 所谓相似的拓扑结构: 例如一个圆环变成正方形、长方形、三角形…...
QT 中setVisible()和setEnabled()的区别
setVisible(bool)和setEnabled(true)在PyQt(以及其他类似的图形用户界面框架)中分别用于控制控件的可见性和可用性,它们之间的主要区别如下: setVisible(bool) 功能:这个函数用于设置QWidget控件的可见状态。参数&am…...
【YashanDB知识库】PHP使用ODBC使用数据库绑定参数功能异常
【问题分类】驱动使用 【关键字】ODBC、驱动使用、PHP 【问题描述】 PHP使用PDO_ODBC连接yashan数据库,使用绑定参数获取数据时,客户现场出现报错 本地复现未出现异常报错,但是无法正确获取数据。 【问题原因分析】开启ODBC报错日志后&am…...
初级篇-Docker容器知识
Docker容器 容器主要是解决跨平台、跨服务运行环境的问题 容器将运行业务应用所需要的东西进行打包,包括依赖项、配置、脚本、二进制文件等。在容器中运行镜像,不用担心不同环境下运行不一致的问题。 容器本质上是一个特殊的进程,将资源、…...
【抽代复习笔记】19-群(十三):奇偶置换、循环置换的几个定理及例题
定义: ①在Sn中,能够表示为奇数多个对换乘积的置换称为“奇置换”,能够表示为偶数多个对换乘积的置换称为“偶置换”; ②所有偶置换的集合记为An。 例1:(1)计算S1和S2中奇、偶置换的数目&…...
RT-Thread简介及启动流程分析
阅读引言: 最近在学习RT-Thread的内部机制,觉得这个启动流程和一些底层原理还是挺重要的, 所以写下此文。 目录 1, RT-Thread简介 2,RT-Thread任务的几种状态 3, 学习资源推荐 4, 启动流程分…...
MCU嵌入式AI开发笔记-视频笔记同步更新
MCU嵌入式AI开发笔记 抖音B站等站点笔记视频同步更新 01嵌入式AI大的方向 STM32跑神经网络 http://news.eeworld.com.cn/mp/EEWorld/a134877.jspx 为什么可以在STM32上面跑神经网络?简而言之就是使用STM32CubeMX中的X-Cube-AI扩展包将当前比较热门的AI框架进行C代码的转化,…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
