JCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
JJCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
目录
- JJCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
- 分类效果
- 格拉姆矩阵图
- GAF-PCNN
- GASF-CNN
- GADF-CNN
- 基本介绍
- 程序设计
- 参考资料
分类效果
格拉姆矩阵图

GAF-PCNN








GASF-CNN






GADF-CNN






基本介绍
1.Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断,三个模型对比,运行环境matlab2023b;
2.先运行格拉姆矩阵变换进行数据转换,然后运行分别GAF_PCNN.mGADF_CNN.m,GASF_CNN.m完成多特征输入数据分类预测/故障诊断;
GADF_CNN.m,是只用到了格拉姆矩阵的GADF矩阵,将GADF矩阵送入CNN进行故障诊断。
GASF_CNN.m,是只用到了格拉姆矩阵的GASF矩阵,将GASF矩阵送入CNN进行故障诊断。
GAF_PCNN.m,是将GASF 图与GADF 图同时送入两条并行CNN 中,经过卷积-池化后,两条CNN网络各输出一组一维向量;然后,将所输出两组一维向量进行拼接融合;通过全连接层后,最终将融合特征送入到Softmax 分类器中。
参考文献


- PCNN结构

- CNN结构

程序设计
- 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断。
fullyConnectedLayer(classnum,'Name','fc12')softmaxLayer('Name','softmax')classificationLayer('Name','classOutput')];lgraph = layerGraph(layers1);layers2 = [imageInputLayer([size(input2,1) size(input2,2)],'Name','vinput') flattenLayer(Name='flatten2')bilstmLayer(15,'Outputmode','last','name','bilstm') dropoutLayer(0.1) % Dropout层,以概率为0.2丢弃输入reluLayer('Name','relu_2')selfAttentionLayer(2,2,"Name","mutilhead-attention") %Attention机制fullyConnectedLayer(10,'Name','fc21')];
lgraph = addLayers(lgraph,layers2);
lgraph = connectLayers(lgraph,'fc21','add/in2');plot(lgraph)%% Set the hyper parameters for unet training
options = trainingOptions('adam', ... % 优化算法Adam'MaxEpochs', 1000, ... % 最大训练次数'GradientThreshold', 1, ... % 梯度阈值'InitialLearnRate', 0.001, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率调整'LearnRateDropPeriod',700, ... % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ... % 学习率调整因子'L2Regularization', 0.001, ... % 正则化参数'ExecutionEnvironment', 'cpu',... % 训练环境'Verbose', 1, ... % 关闭优化过程'Plots', 'none'); % 画出曲线
%Code introduction
if nargin<2error('You have to supply all required input paremeters, which are ActualLabel, PredictedLabel')
end
if nargin < 3isPlot = true;
end%plotting the widest polygon
A1=1;
A2=1;
A3=1;
A4=1;
A5=1;
A6=1;a=[-A1 -A2/2 A3/2 A4 A5/2 -A6/2 -A1];
b=[0 -(A2*sqrt(3))/2 -(A3*sqrt(3))/2 0 (A5*sqrt(3))/2 (A6*sqrt(3))/2 0];if isPlotfigure plot(a, b, '--bo','LineWidth',1.3)axis([-1.5 1.5 -1.5 1.5]);set(gca,'FontName','Times New Roman','FontSize',12);hold on%grid
end% Calculating the True positive (TP), False Negative (FN), False Positive...
% (FP),True Negative (TN), Classification Accuracy (CA), Sensitivity (SE), Specificity (SP),...
% Kappa (K) and F measure (F_M) metrics
PositiveClass=max(ActualLabel);
NegativeClass=min(ActualLabel);
cp=classperf(ActualLabel,PredictedLabel,'Positive',PositiveClass,'Negative',NegativeClass);CM=cp.DiagnosticTable;TP=CM(1,1);FN=CM(2,1);FP=CM(1,2);TN=CM(2,2);CA=cp.CorrectRate;SE=cp.Sensitivity; %TP/(TP+FN)SP=cp.Specificity; %TN/(TN+FP)Pr=TP/(TP+FP);Re=TP/(TP+FN);F_M=2*Pr*Re/(Pr+Re);FPR=FP/(TN+FP);TPR=TP/(TP+FN);K=TP/(TP+FP+FN);[X1,Y1,T1,AUC] = perfcurve(ActualLabel,PredictedLabel,PositiveClass); %ActualLabel(1) means that the first class is assigned as positive class%plotting the calculated CA, SE, SP, AUC, K and F_M on polygon
x=[-CA -SE/2 SP/2 AUC K/2 -F_M/2 -CA];
y=[0 -(SE*sqrt(3))/2 -(SP*sqrt(3))/2 0 (K*sqrt(3))/2 (F_M*sqrt(3))/2 0];if isPlotplot(x, y, '-ko','LineWidth',1)set(gca,'FontName','Times New Roman','FontSize',12);
% shadowFill(x,y,pi/4,80)fill(x, y,[0.8706 0.9216 0.9804])
end%calculating the PAM value
% Get the number of vertices
n = length(x);
% Initialize the area
p_area = 0;
% Apply the formula
for i = 1 : n-1p_area = p_area + (x(i) + x(i+1)) * (y(i) - y(i+1));
end
p_area = abs(p_area)/2;%Normalization of the polygon area to one.
PA=p_area/2.59807;if isPlot%Plotting the Polygonplot(0,0,'r+')plot([0 -A1],[0 0] ,'--ko')text(-A1-0.3, 0,'CA','FontWeight','bold','FontName','Times New Roman')plot([0 -A2/2],[0 -(A2*sqrt(3))/2] ,'--ko')text(-0.59,-1.05,'SE','FontWeight','bold','FontName','Times New Roman')plot([0 A3/2],[0 -(A3*sqrt(3))/2] ,'--ko')text(0.5, -1.05,'SP','FontWeight','bold','FontName','Times New Roman')plot([0 A4],[0 0] ,'--ko')text(A4+0.08, 0,'AUC','FontWeight','bold','FontName','Times New Roman')plot([0 A5/2],[0 (A5*sqrt(3))/2] ,'--ko')text(0.5, 1.05,'J','FontWeight','bold','FontName','Times New Roman')daspect([1 1 1])
end
Metrics.PA=PA;
Metrics.CA=CA;
Metrics.SE=SE;
Metrics.SP=SP;
Metrics.AUC=AUC;
Metrics.K=K;
Metrics.F_M=F_M;printVar(:,1)=categories;
printVar(:,2)={PA, CA, SE, SP, AUC, K, F_M};
disp('预测结果打印:')
for i=1:length(categories)fprintf('%23s: %.2f \n', printVar{i,1}, printVar{i,2})
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691
相关文章:
JCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
JJCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断 目录 JJCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断分类效果格拉姆矩阵图GAF-PCNNGASF-CNNGADF-CNN 基本介绍程序设计参考资料 分类效果 格拉姆…...
最新Prompt预设词分享,DALL-E3文生图+文档分析
使用指南 直接复制使用 可以前往已经添加好Prompt预设的AI系统测试使用(可自定义添加使用) 支持GPTs SparkAi SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。支持GPT-4o…...
基于SpringBoot+Vue会所产后护理系统设计和实现
基于SpringBootVue会所产后护理系统设计和实现 🍅 作者主页 网顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种定制系统 &#…...
Linux中的EINTR和EAGAIN错误码
Linux中的EINTR和EAGAIN错误码 在Linux系统中,进行系统调用时经常会遇到各种错误码。其中,EINTR(Interrupted system call)和EAGAIN(Resource temporarily unavailable)是两个较为常见的错误码,…...
用户需求分析揭秘:最佳实践与策略
大多数产品团队都有自己处理客户需求的一套流程。但是那些潜在的客户和他们的需求呢?如果在产品管理上已经有一定的资历,很可能对此见惯不怪了。 通常,这些需求是销售人员跑来告诉你的,大概就是说:“超棒的潜在客户一…...
批量创建文件夹 就是这么简单 一招创建1000+文件夹
批量创建文件夹 就是这么简单 一招创建1000文件夹 在工作中,或者生活中,我们经常要用到批量创建文件夹,并且根据不同的工作需求,要求是不一样的,比如有些人需要创建上千个不一样名称的文件夹,如果靠手动创…...
LogicFlow 学习笔记——8. LogicFlow 基础 事件 Event
事件 Event 当我们使用鼠标或其他方式与画布交互时,会触发对应的事件。通过监听这些事件,可以获取其在触发时所产生的数据,根据这些数据来实现需要的功能。详细可监听事件见事件API。 监听事件 lf实例上提供on方法支持监听事件。 lf.on(&…...
Nginx缓存之代理缓存配置
Nginx 的缓存功能是集成在代理模块中的,当启用缓存功能时,Nginx 将请求返回的响应数据持久化在服务器磁盘中,响应数据缓存的相关元数据、有效期及缓存内容等信息将被存储在定义的共享内存中。当收到客户端请求时,Nginx 会在共享内…...
【Android】使用SeekBar控制数据的滚动
项目需求 有一个文本数据比较长,需要在文本右侧加一个SeekBar,然后根据SeekBar的上下滚动来控制文本的滚动。 项目实现 我们使用TextView来显示文本,但是文本比较长的话,需要在TextView外面套一个ScrollView,但是我…...
新能源汽车的能源动脉:中国星坤汽车电缆在新能源汽车电气化中的应用!
随着新能源汽车行业的蓬勃发展,汽车电缆组件作为汽车电气系统的核心组成部分,其重要性日益凸显。中国星坤汽车电缆组件以其卓越的性能和创新技术,为汽车的电能传输、信号传递和控制提供了坚实的保障。本文将深入解析星坤汽车电缆组件的特性、…...
AVL许可证查询系统
在数字化时代,软件已经成为企业运营的核心组成部分。然而,随着软件应用的不断增加,许可证管理也变得越来越复杂。AVL许可证查询系统作为企业软件资产管理的重要工具,能够帮助企业实现对软件许可证的全面掌控。本文将深入探讨AVL许…...
四个步骤,帮你成为价值导向型项目经理
在企业数字化转型的浪潮下,项目管理的方向逐渐从任务导向转变为以价值交付为导向。在快速变化的市场环境中,仅仅关注项目任务的完成已不足以确保项目的成功,需要更加注重项目的最终成果和价值,确保项目能够为组织带来实际的价值和…...
Python3 使用 clickhouse-connect 操作 clickhouse
版本: Python 3.7 x86 clickhouse 24.6.1.3573 clickhouse-connect 0.6.22 代码一: # pip install clickhouse-connectimport clickhouse_connect# 准备参数 host "192.168.1.112" port 8123 username "default" passw…...
Python脚手架系列-DrissionPage
记录DrissionPage模块使用中的一些常常复用的代码,持续更新… 接管谷歌浏览器 from DrissionPage import ChromiumPage, ChromiumOptionsco ChromiumOptions().set_local_port(4249) driver ChromiumPage(addr_or_optsco)创建driver,如果浏览器已开启优先接管&am…...
Java中如何调用mysql中函数
在Java中调用MySQL中的函数(无论是存储函数还是自定义函数),通常是通过JDBC(Java Database Connectivity)来完成的。以下是一个简单的步骤说明和示例代码,展示如何在Java中调用MySQL中的函数。 步骤 添加…...
Huggingface-cli 登录最新版(2024)
安装Huggingface-cli pip install -U "huggingface_hub[cli]"设置好git的邮箱和用户名和huggingface的github账号一致 git config --global user.mail xxx git config --global user.name xxx登录 复制token,划红线的地方,在命令行中点击右…...
Java学习 - Docker管理和容器命令 实例
docker管理 查看docker版本,检测是否可用 sudo docker version查看docker 系统信息 sudo docker infodocker容器命令 容器状态 容器标识 容器长uuid容器短uuid容器名字 查看容器状态 sudo docker status [容器标识1] [容器标识2] [容器标识n]深入查看容器信息 su…...
下载工程resources目录下的模板excel文件
一、添加依赖 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml</artifactId> <version>5.1.0</version> </dependency> 二、编写接口 GetMapping("/downloadTemplate")public void downlo…...
音频基础知识和音频指标
音频基础知识 声音 声音(sound)是由物体振动产生的声波。物体在一秒钟之内振动的次数叫做频率,单位是赫兹,字母Hz。人耳可以识别的声音频率在 20 Hz~20000 Hz之间; 声音三要素: 响度 响度,…...
使用Vue CLI在其他磁盘创建项目出现错误及解决
Vue CLI是Vue.js官方推出的脚手架工具,可以帮我们快速的创建Vue项目框架。 我们创建Vue项目时一般默认都是在C盘,但由于某些因素我们需要在其他磁盘上创建Vue项目。 通过“winr”打开终端时默认位置都是C盘,但是Vue CLI不接受绝对路径作为参…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
