图象去噪1-使用中值滤波与均值滤波
1、中值滤波
使用中值滤波去除图像的异常像素点,使用cv2.cv2.medianBlur(img, 3)表示再图像在中值滤波窗口3*3的范围内,从下到大排序,将当前值替换为排序中值(如下图所示)将56替换为(56,66,90,91,93,95,97,101)中的中值93。
Python代码如下:
将输入图像经过中值滤波后:
noise_img = './noiseimg.png'
image = cv2.imread(noise_img)
image = cv2.medianBlur(image, 5)
cv2.imwrite('./img.png', image)
原图与中值滤波后得到对比:
注意:中值滤波较大的核尺寸会考虑更大的邻域,虽然能更有效地去除噪声,但也会更加模糊图像细节和边缘。
2、均值滤波
均值滤波是指任意一点的像素值,都是周围 N×M 个像素值的均值。opencv中使用cv2.blur()
实现代码与效果如下:
def mean_denoise(noise_image='./noiseimg1.png', result_path='./mean_result1.png', kernel_size=(7,7)):image = cv2.imread(noise_image)image = cv2.blur(image, kernel_size)cv2.imwrite(result_path, image)
原图与均值滤波效果对比:
注意:kernel_size越大,滤波范围越大,去噪效果强,但会导致图象边缘模糊。
3、双边滤波
参考:https://blog.csdn.net/qq_49478668/article/details/123488527
去噪的同时,考虑到了图像边缘信息。
def bilateral_filter_noise(noise_image='./noiseimg1.png', result_path='./bilateral_result1.png'):image = cv2.imread(noise_image)filtered_image = cv2.bilateralFilter(image, 9,200,200)cv2.imwrite(result_path, filtered_image)
原图与双边滤波效果对比:
注意:
cv2.bilateralFilter(image, d=9,sigmaColor=200,sigmaSpace=200)● d是在滤波时选取的空间距离参数,这里表示以当前像素点为中心点的直径。如果该值为非正数,则会自动从参数 sigmaSpace 计算得到。如果滤波空间较大(d>5),则速度较慢。因此,在实时应用中,推荐d=5。对于较大噪声的离线滤波,可以选择d=9。
● sigmaColor是滤波处理时选取的颜色差值范围,该值决定了周围哪些像素点能够参与到滤波中来。与当前像素点的像素值差值小于 sigmaColor 的像素点,能够参与到当前的滤波中。该值越大,就说明周围有越多的像素点可以参与到运算中。该值为0时,滤波失去意义;该值为255时,指定直径内的所有点都能够参与运算。
● sigmaSpace是坐标空间中的sigma值。它的值越大,说明有越多的点能够参与到滤波计算中来。当d>0时,无论sigmaSpace的值如何,d都指定邻域大小;否则,d与 sigmaSpace的值成比例。
原文链接:https://blog.csdn.net/qq_49478668/article/details/123488527
相关文章:

图象去噪1-使用中值滤波与均值滤波
1、中值滤波 使用中值滤波去除图像的异常像素点,使用cv2.cv2.medianBlur(img, 3)表示再图像在中值滤波窗口3*3的范围内,从下到大排序,将当前值替换为排序中值(如下图所示)将56替换为(56,66,90,…...

微软Edge浏览器全解析
微软Edge浏览器是一款由微软开发的现代网页浏览器,旨在为用户提供高效、安全和可定制的浏览体验。 这款浏览器最初于2015年发布,作为Internet Explorer(IE)的继任者,并随着Windows 10操作系统一同亮相。然而࿰…...

Windows操作系统安装mysql数据库(zip安装包)
MySQL是目前最为流行的开放源码的数据库,是完全网络化的跨平台的关系型数据库系统,它是由瑞典MySQLAB公司开发,目前属于Oracle公司。任何人都能从Internet下载MySQL软件,而无需支付任费用,并且“开放源码”意味着任何人…...

什么是仓颉编程语言?
仓颉编程语言是一款面向全场景智能的新一代编程语言,主打原生智能化、天生全场景、高性能和强安全。 以下是仓颉编程语言的相关介绍: 原生智能化:仓颉编程语言内嵌了AgentDSL的编程框架,将自然语言与编程语言进行了有机融合&…...

ONLYOFFICE8.1-------宝藏级别桌面编辑器测评
简介 ONLYOFFICE 8.1 是一个功能强大的办公套件,提供了一系列广泛的功能,用于文档管理、协作和沟通。它包括用于创建和编辑文本文档、电子表格、演示文稿等的工具。ONLYOFFICE 8.1 的一些关键特性包括: 1. 协作:ONLYOFFICE 8.1 允…...

微信小程序笔记 七!
页面配置 1. 页面配置文件的作用 小程序中,每个页面都有自己的 .json 配置文件,用来对当前页面的窗口外观、页面效果等进行配置。 2. 页面配置和全局配置的关系 小程序中,app.json 中的 window 节点,可以全局配置小程序中每个…...

GPT-5的即将登场:新一代大语言模型的无限可能
GPT-5的即将登场:新一代大语言模型的无限可能 人工智能领域正经历着一场前所未有的变革,而其中大语言模型的进步尤为瞩目。继GPT-4取得巨大成功后,OpenAI即将推出的GPT-5被寄予厚望。作为新一代大语言模型,GPT-5在各个方面都有望…...

微信小程序的常用事件的用法
在微信小程序中,事件绑定是非常常见的操作。以下是一些常用事件的具体用法和示例: 1. bindtap 或 catchtap 点击事件,当用户点击某个元素时触发。 html <!-- WXML 文件 --> <view bindtap"handleTap">点击我<iew…...

前端 CSS 经典:保持元素宽高比
前言:在很多网站,不管页面宽度的变化,都需要里面的图片或者视频,宽高比不变。有两种实现方式。 1. aspect-ratio 属性 使用 aspect-ratio 属性可以直接定义元素的宽高比,但是有兼容性问题 <!DOCTYPE html> &l…...

MES工业一体机的自动化控制技术
MES工业一体机是一种集成了物料管理、生产计划、设备管理、质量控制等功能于一身的智能化生产设备。其自动化控制技术是指通过计算机自动控制系统,实现对生产过程中各种参数的监测、调整和控制,从而提高生产效率、降低生产成本和提高产品质量的一种技术手…...

三品PDM电子行业解决方案介绍 电子企业PDM应用效果
随着全球化和技术创新的不断推进,电子行业正经历着前所未有的发展机遇。然而,随之而来的挑战也日益凸显,尤其是在产品数据管理PDM方面。本文将探讨电子行业在PDM方面的需求,并提出相应的解决方案,以帮助企业提升效率和…...

模拟面试之外卖点单系统(高频面试题目mark)
今天跟大家分享一个大家简历中常见的项目-《外卖点单系统》,这是一个很经典的项目,有很多可以考察的知识点和技能点,但大多数同学都是学期项目,没有实际落地,对面试问题准备不充分,回答时抓不到重点&#x…...

SwiftUI 6.0(iOS 18/macOS 15)关于颜色 Color 的新玩法
概览 WWDC 2024 重装升级的 SwiftUI 6.0 让 Apple 不同平台(iOS 18/macOS 15)显得愈发的冰壶玉衡、美轮美奂。 之前梦寐以求的颜色混合功能在 WWDC 24 里终于美梦成真啦! 在本篇博文中,您将学到如下内容: 概览1. 梦想…...

C++核心编程运算符的重载
C核心编程运算符的重载 文章目录 C核心编程运算符的重载1.“”运算符的重载1.1 作为成员函数重载1.2 作为全局函数重载 2."<<"运算符重载2.1为什么需要重载左移运算符2.2如何重载左移运算符2.3注意事项 3.""运算符重载3.1 前置递增运算符重载3.2后置…...

雷达标定与解析
融合雷达与解析雷达数据的相关代码。感谢开源社区的贡献。以下代码继承了很多人的工作。 如果是单雷达: 直接进行标定,所以就是接收相关的话题然后发布。 lidar_calibration_params.yaml: calibration:在这个接口里面x_offset: 0.0y_offset:…...

养殖自动化温控系统:现代养殖场的智能守护神
现代农业养殖业中,养殖自动化温控系统已经成为提高生产效率和保障动物福利的关键技术之一。本篇文章将深入介绍养殖自动化温控系统的原理、组成、优势及其在不同类型养殖场中的应用实例,并展望该技术的未来发展。 一、养殖自动化温控系统概述 养殖自动…...

用python打印——九九乘法表2
for i in range(1, 10):for j in range(1, i 1):print(f"{j} * {i} {j * i}\t", end)j 1print()外层的 for 循环从 1 到 9 遍历 i。对于每个 i,内层的 for 循环从 1 到 i 遍历 j。在每次循环中,打印出 j 乘以 i 的结果,并以制表…...

如何系统学习机器学习?
我不是计算机专业,第一次接触机器学习还是在研一的时候,当时是看到机器学习可以做号码识别,就觉得好厉害,想学这个。 首次了解到Python这门语言,知道了机器学习可以做什么后,就感觉打开了新世界一样。再后来…...

Qt:1.杂谈
1.前端开发和Qt: 前端开发可以分为网页开发、移动端开发、桌面应用开发。Qt这个技术,是来开发电脑桌面应用程序的,也就是客户端程序的开发。属于比较经典的前端开发体系下。客户端开发的任务:编写和用户交互的界面或者应用程序。大…...

AI视频模型Sora核心功能以及应用场景
随着人工智能技术的飞速发展,AI在视频处理和生成领域的应用正变得越来越广泛。Sora,作为新一代AI视频模型,展示了前所未有的潜力和创新能力。本文将深入探讨Sora的功能、应用场景以及它所带来的革命性变化。 一、Sora的核心功能 1.1 视频生…...

面试-细聊synchronized
1.线程安全问题的主要诱因: 存在多条共享数据(临界资源) 存在多条线程共同操作这些共享数据 解决问题的根本方法: 同一时刻有且仅有一个线程在操作共享数据,其他线程必须等到该线程处理完数据后在对共享数据进行操作。 2.synchroized锁 分…...

AI降重新突破:chatgpt降重工具在学术论文中的应用与效果
论文降重一直是困扰各界毕业生的“拦路虎”,还不容易熬过修改的苦,又要迎来降重的痛。 其实想要给论文降重达标,我有一些独家秘诀。话不多说直接上干货! 1、同义词改写(针对整段整句重复) 这是最靠谱也是…...

Spring学习02-[Spring容器核心技术IOC学习]
Spring容器核心技术IOC学习 什么是bean?如何配置bean?Component方式bean配合配置类的方式import导入方式 什么是bean? 被Spring管理的对象就是bean,和普通对象的区别就是里面bean对象里面的属性也被注入了。 如何配置bean? Component方式、bean配合配置类的方式、import…...

2024上海CDIE 参展预告 | 一站式云原生数字化平台已成趋势
为什么企业需要进行数字化转型?大家都在讨论的数字化转型面临哪些困境?2024.6.25-26 CDIE数字化创新博览会现场,展位【A18】,期待与您相遇,共同探讨企业如何利用数字化技术驱动业务增长。 一、展会介绍——CDIE数字化…...

高考专业组 07组 08组 武汉大学
武汉大学的招生都什么废物点心,搜个专业组都没官方解释! 07组:理学,详见下表专业代码07xxxx,例如数学、物理、化学 08组:工学,详见下表专业代码08xxxx,例如机械、电子信息、自动化、…...

解析JavaScript中逻辑运算符和||的返回值机制
本文主要内容:了解逻辑运算符 &&(逻辑与)和 ||(逻辑或)的返回值。 在JavaScript中,逻辑运算符 &&(逻辑与)和 ||(逻辑或)的返回值可能并不总…...

Java中的数据结构与算法探秘
Java中的数据结构与算法探秘 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 引言 数据结构与算法是计算机科学的基础,对于Java程序员来说&#x…...

AST反混淆实战|嵌套的赋值语句通用还原处理
关注它,不迷路。 本文章中所有内容仅供学习交流,不可用于任何商业用途和非法用途,否则后果自负,如有侵权,请联系作者立即删除! 1.混淆代码 下面的这段代码是来自px3验证码核心混淆代码: function _u…...

Unity的ScrollView滚动视图复用
发现问题 在游戏开发中有一个常见的需求,就是需要在屏幕显示多个(多达上百)显示item,然后用户用手指滚动视图可以选择需要查看的item。 现在的情况是在100个data的时候,Unity引擎是直接创建出对应的100个显示item。 …...

详解Spring AOP(二)
目录 1.切点表达式 1.1execution表达式 1.2 annotation 1.2.1自定义注解MyAspect 1.2.3添加自定义注解 2.Sping AOP原理 2.1代理模式 2.1.1静态代理 2.1.2动态代理 2.1.3JDK动态代理 2.1.4CGLIB动态代理 3.总结 承接上文:详解Spring AOP(一&…...