当前位置: 首页 > news >正文

【python】OpenCV—Segmentation

在这里插入图片描述

文章目录

  • cv2.kmeans
  • 牛刀小试

cv2.kmeans

cv2.kmeans 是 OpenCV 库中用于执行 K-Means 聚类算法的函数。以下是根据参考文章整理的 cv2.kmeans 函数的中文文档:

一、函数功能

cv2.kmeans 用于执行 K-Means 聚类算法,将一组数据点划分到 K 个簇中,使得簇内的数据点尽可能相似,而簇间的数据点尽可能不同。

二、函数格式

retval, labels, centers = cv2.kmeans(data, K, None, criteria, attempts, flags, centers=None)

三、参数说明

  • data:需要被聚类的原始数据集合,数据类型应为 np.float32。数据应是一维或多维的,每个样本应使用一行表示。例如,Mat points(count, 2, CV_32F) 表示二维浮点数据集。

  • K:聚类簇数,即希望将数据分成的簇的数量。

  • None:在原始 API 中,此位置是用于传递之前迭代的标签的,但在大多数情况下,可以设置为 None,因为算法会自动处理。

  • criteria:算法的终止条件。通常是一个包含三个元素的元组 (type, max_iter, epsilon):

    • type:终止条件类型,可以是 cv2.TERM_CRITERIA_EPS(仅当 epsilon 满足时停止)、cv2.TERM_CRITERIA_MAX_ITER(当迭代次数超过阈值时停止)或两者之和。

    • max_iter:最大迭代次数。

    • epsilon:精确度阈值。

  • attempts:使用不同的初始中心(或种子)来执行算法的次数。算法会返回最好的结果。

  • flags:用于设置如何选择起始重心。可以是 cv2.KMEANS_PP_CENTERS(使用 K-Means++ 初始化)或 cv2.KMEANS_RANDOM_CENTERS(随机初始化)。
    centers(可选):输出的聚类中心。如果未提供,则算法会返回一个。

四、返回值

  • retval:紧密度(compactness),即每个点到其相应簇中心的距离的平方和。
  • labels:每个数据点的最终分类标签数组。
  • centers:由聚类中心组成的数组。

五、注意事项

  • 在调用 cv2.kmeans 之前,通常需要将数据转换为 np.float32 类型,并确保数据的形状是 (样本数, 特征数)。

  • 聚类结果可能受初始中心选择的影响,因此设置 attempts 参数为较高的值可能会得到更稳定的结果。

  • 根据问题的具体需求和数据特性,可能需要调整 K、max_iter 和 epsilon 等参数以获得最佳聚类效果。

牛刀小试

import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cmnum_classes = 6img = cv2.imread('2.jpg', 0)  # image read be 'gray'# change img(2D) to 1D
img1 = img.reshape((img.shape[0]*img.shape[1], 1))
img1 = np.float32(img1)# define criteria = (type,max_iter,epsilon)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)# set flags: hou to choose the initial center
# ---cv2.KMEANS_PP_CENTERS ;
# cv2.KMEANS_RANDOM_CENTERS
flags = cv2.KMEANS_RANDOM_CENTERS# apply kmenas
compactness, labels, centers = cv2.kmeans(img1, num_classes, None, criteria, 10, flags)
print(len(centers))mask = labels.reshape((img.shape[0],img.shape[1]))cmap = cm.get_cmap('Set1', num_classes)  # 使用'viridis' colormap,但你可以使用其他colormap# 绘制mask图像
fig, ax = plt.subplots(figsize=(8, 8))
ax.imshow(mask, cmap=cmap, interpolation='nearest', alpha=0.8)
plt.title('mask')
plt.xticks([])
plt.yticks([])# 你可以添加颜色条(colorbar)来显示每个颜色对应的类别
cbar = fig.colorbar(ax.images[-1], ax=ax, ticks=np.arange(num_classes))
cbar.ax.set_yticklabels(['background'] + [f'class {i}' for i in range(1, num_classes)])# 显示图像
plt.show()

输入的原图

在这里插入图片描述
显示的灰度图
在这里插入图片描述
聚成2类
在这里插入图片描述

聚成3类

在这里插入图片描述

聚成4类

在这里插入图片描述

聚成5类

在这里插入图片描述

聚成6类

在这里插入图片描述

相关文章:

【python】OpenCV—Segmentation

文章目录 cv2.kmeans牛刀小试 cv2.kmeans cv2.kmeans 是 OpenCV 库中用于执行 K-Means 聚类算法的函数。以下是根据参考文章整理的 cv2.kmeans 函数的中文文档: 一、函数功能 cv2.kmeans 用于执行 K-Means 聚类算法,将一组数据点划分到 K 个簇中&…...

python-题库篇-Python语言特性

文章目录 Python语言特性1 Python的函数参数传递2 Python中的元类(metaclass)3 staticmethod和classmethod4 类变量和实例变量5 Python自省6 字典推导式7 Python中单下划线和双下划线8 字符串格式化:%和.format9 迭代器和生成器10 *args and **kwargs11 面向切面编程AOP和装饰器…...

WEB界面上使用ChatGPT

(作者:陈玓玏) 开源项目,欢迎star哦,https://github.com/tencentmusic/cube-studio 随着大模型不断发展,现在无论写代码,做设计,甚至老师备课、评卷都可以通过AI大模型来实现了&…...

【Matlab】CNN-LSTM分类 卷积神经网络-长短期记忆神经网络组合模型(附代码)

资源下载: https://download.csdn.net/download/vvoennvv/89466499 分类算法资源合集:https://download.csdn.net/download/vvoennvv/89466519 目录 Matlab SVM支持向量机分类算法 Matlab RF随机森林分类算法 Matlab RBF径向基神经网络分类算法 Ma…...

性能工具之 MySQL OLTP Sysbench BenchMark 测试示例

文章目录 一、前言二、测试环境1、服务器配置2、测试拓扑 三、测试工具安装四、测试步骤1、导入数据2、压测数据3、清理数据 五、结果解析六、最后 一、前言 做为一名性能工程师掌握对 MySQL 的性能测试是非常必要的,本文基于 Sysbench 对MySQL OLTP(联…...

【QT】QCustomPlot库中iSelectPlottables的使用

QCP::iSelectPlottables 是 QCustomPlot 库中的一个枚举值,用于控制选择交互。QCustomPlot 是一个用于创建绘图和数据可视化的Qt库。 QCP::iSelectPlottables 允许用户选择图表中的绘图对象(如图形、曲线、柱状图等)。 应用场景 QCP::iSele…...

字节跳动联手博通:5nm AI芯片诞生了?

字节跳动联手博通:5nm AI芯片诞生了? 前言 就在6月24日,字节跳动正在与美国博通合作开发一款5纳米工艺的专用集成电路(ASIC) AI处理器。这款芯片旨在降低采购成本并确保高端AI芯片的稳定供应。 根据报道,尽管芯片设计工作进展顺利…...

【数据结构与算法】动态查找表(二叉排序树,二叉平衡树)详解

二叉排序树的数据结构。 struct TreeNode {ElemType data;TreeNode *left, *right; }; using BiTree TreeNode *;结构体包含三个成员: data 是一个 ElemType 类型的变量,用于存储二叉搜索树节点的数据。left 是一个指向 TreeNode 类型的指针&#xff…...

PyTorch中“No module named ‘torch._six‘“的报错场景及处理方法

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 在使用PyTorch时,您可能会遇到"No module named ‘torch._six’"的错误。这通常是因为PyTorch的某些…...

Spring Boot 集成 MinIO 实现文件上传

Spring Boot 集成 MinIO 实现文件上传 一、 Minio 服务准备 MinIO的搭建过程参考 Docker 搭建 MinIO 对象存储。 登录MinIO控制台&#xff0c;新建一个 Bucket&#xff0c;修改 Bucket 权限为公开。 二、MinIO 集成 添加 MinIO 依赖 <!-- https://mvnrepository.com/ar…...

目标跟踪——KCF源码用python实现

from numpy.fft import fft2, ifft2, fftshift import cv2 import numpy as npclass HOG:def __init__(self, winSize):""":param winSize: 检测窗口的大小"""self.winSize winSizeself.blockSize (8, 8)self.blockStride (4, 4)self.cellSiz…...

前端 转换笔记

<!DOCTYPE html> <html> <head> <meta charset"utf-8" /> <title>转换</title> <style> .box{ /* 盒子摆在body的正中间 */ position: absolut…...

个人开发笔记

开发笔记 开发常见问题Vue开发中页面flex滚动布局&#xff0c;内容置顶问题功能快捷键 开发常见问题 Vue开发中页面flex滚动布局&#xff0c;内容置顶问题 直接操作路由&#xff1a; const router createRouter({routes: routes,history: createWebHashHistory(),scrollBeha…...

pdf压缩,pdf压缩在线,pdf文件太大怎么变小

在数字化时代&#xff0c;PDF文档因其跨平台、保持原样、易于阅读和打印等特点&#xff0c;成为了我们日常工作和生活中不可或缺的一部分。然而&#xff0c;随着PDF文件的不断累积&#xff0c;存储空间逐渐变得紧张&#xff0c;特别是在处理大量大型PDF文件时&#xff0c;如何有…...

Go 如何使用指针灵活操作内存

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

【面试干货】Java中的++操作符与线程安全性

【面试干货】Java中的操作符与线程安全性 1、什么是线程安全性&#xff1f;2、 操作符的工作原理3、 操作符与线程安全性4、如何确保线程安全&#xff1f;5、 结论 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在Java编程中&#xff0c;操…...

NLP学习与踩坑记录(持续更新版)

NLP学习与踩坑记录&#xff08;持续更新版&#xff09; OSError: Cant load tokenizer for bert-base-uncased.google.protobuf.message.DecodeError: Error parsing messageDeepspeed 本博客记录了博主在学习NLP时遇到了各种各样的问题与解决方法&#xff0c;供大家参考&#…...

Java也能做OCR!SpringBoot 整合 Tess4J 实现图片文字识别

文章目录 1. 环境准备1.1 安装 Tesseract OCR 引擎1.2 引入 Tess4J 依赖 2. 创建 Spring Boot 项目2.1 初始化项目2.2 目录结构 3. 编写 OCR 功能代码3.1 创建服务层3.2 创建控制器层 4. 配置 Tesseract 语言包5. 运行和测试5.1 启动 Spring Boot 应用5.2 使用 Postman 或 cURL…...

微信小程序常用标签及其用法

大家好&#xff0c;我是linzi&#xff0c;今天我来给大家分享一下微信小程序一些个常用的标签及其用法 1. <view> 标签 <view> 标签是小程序中最常用的标签之一&#xff0c;用于组织和布局页面上的内容&#xff0c;类似于HTML中的 <div> 标签。 <view …...

开发查询订单信息fastGPT智能体工作流 将工作流接入到人工客服系统

我在抖音上发布了视频 https://www.douyin.com/video/7382446337482099977 下面是主要内容介绍 【视频标题&#xff1a;】开发查询订单信息fastGPT智能体工作流 将工作流接入到人工客服系统 #智能体 #FastGPT #客服系统-----------【视频行业分类&#xff1a;】<3C数码>-…...

Flink集群运行模式

我们了解了flink的一个集群的一个基础架构&#xff0c;包括里面核心的一些组件&#xff0c;比如说job manager&#xff0c;task manager等一些组件的一些主要的一些组成。本节课程开始我们学习flink的一个集群部署模式。首先我们来看一下flink集群部署模式究竟应该有哪一些种类…...

XSS 安全漏洞介绍及修复方案

简介 XSS&#xff08;Cross Site Scripting&#xff09;是一种常见的 Web 安全漏洞&#xff0c;攻击者通过在网页中注入恶意脚本代码&#xff0c;使得网页在用户端执行这些脚本&#xff0c;从而窃取用户信息或者进行其他恶意操作。为了防止 XSS 攻击&#xff0c;可以使用正则表…...

基于STM32的智能仓库管理系统

目录 引言环境准备智能仓库管理系统基础代码实现&#xff1a;实现智能仓库管理系统 4.1 数据采集模块4.2 数据处理与分析4.3 通信模块实现4.4 用户界面与数据可视化应用场景&#xff1a;仓库管理与优化问题解决方案与优化收尾与总结 1. 引言 智能仓库管理系统通过使用STM32嵌…...

LeetCode —— 只出现一次的数字

只出现一次的数字 I 本题依靠异或运算符的特性&#xff0c;两个相同数据异或等于0&#xff0c;数字与0异或为本身即可解答。代码如下: class Solution { public:int singleNumber(vector<int>& nums) {int ret 0;for (auto e : nums){ret ^ e;}return ret;} };只出…...

python遍历文件夹中所有图片

python遍历文件夹中的图片-CSDN博客 这个是之前的版本&#xff0c;现在这个版本会更好&#xff0c;直接进来就在列表中 path glob.glob("1/*.jpg")print(path)print(len(path))path_img glob.glob("1/*.jpg")path_img.extend(path)print(len(path_img))…...

速盾:DDOS能打死高防ip吗?

DDoS攻击是一种利用大量计算机或设备发起的分布式拒绝服务攻击。它的目标是通过发送大量流量或请求&#xff0c;使目标服务器或网络资源无法正常工作。高防IP是一种具有强大防御能力的网络服务&#xff0c;能够抵御各种形式的网络攻击&#xff0c;包括DDoS攻击。然而&#xff0…...

3dsMax怎样让渲染效果更逼真出色?三套低中高参数设置

渲染是将精心构建的3D模型转化为逼真图像的关键步骤。但要获得令人惊叹的渲染效果&#xff0c;仅仅依赖默认设置是不够的。 实现在追求极致画面效果的同时&#xff0c;兼顾渲染速度和时间还需要进行一些调节设置&#xff0c;如何让渲染效果更加逼真&#xff1f; 一、全局照明与…...

Android的OverlayFS原理与作用

标签: OverlayFS; Android;Overlay Filesystem; Android的OverlayFS原理与作用 概述 OverlayFS(Overlay Filesystem)是一种联合文件系统,允许将一个或多个文件系统叠加在一起,使它们表现为一个单一的文件系统。Android系统利用OverlayFS来实现动态文件系统的叠加和管…...

奇点临近:人类与智能时代的未来

在信息爆炸的时代&#xff0c;我们每天都被海量的信息所淹没&#xff0c;如何才能在这个嘈杂的世界中找到真正有价值的信息&#xff1f;如何才能利用信息的力量&#xff0c;提升我们的认知水平&#xff0c;重塑我们的未来&#xff1f; 这些问题的答案&#xff0c;或许都能在雷…...

NAS教程丨铁威马如何登录 SSH终端?

适用型号&#xff1a; 所有TNAS 型号 如您有特殊操作需要通过 SSH 终端登录 TNAS&#xff0c;请参照以下指引&#xff1a; (注意: 关于以下操作步骤中的"cd /"的指令,其作用是使当前 SSH/Telnet 连接的位置切换到根目录,以免造成对卷的占用.请不要遗漏它.) Windows…...