当前位置: 首页 > news >正文

wordpress安装后查看站点失败/竞价托管怎么做

wordpress安装后查看站点失败,竞价托管怎么做,本地网站建设多少钱,品牌网站建设S苏州编者按 在本系列文章中,我们梳理了顶刊Manufacturing & Service Operations Management5月份发布有关OR/OM以及相关应用的文章之基本信息,旨在帮助读者快速洞察行业/学界最新动态。 推荐文章1 ● 题目:Robust Drone Delivery with Weath…

编者按

在本系列文章中,我们梳理了顶刊Manufacturing & Service Operations Management5月份发布有关OR/OM以及相关应用的文章之基本信息,旨在帮助读者快速洞察行业/学界最新动态。

推荐文章1

● 题目:Robust Drone Delivery with Weather Information

考虑天气信息的鲁棒无人机送货

 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/msom.2022.0339

● 作者:Chun Cheng , Yossiri Adulyasak , Louis-Martin Rousseau

● 发布时间

2024.05.03

● 摘要

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, leading to late deliveries.

Methodology/results: To mitigate the risk of delivery delays caused by wind uncertainty, we propose a two-period drone scheduling model to robustly optimize the delivery schedule. In this framework, the scheduling decisions are made in the morning, with the provision for different delivery schedules in the afternoon that adapt to updated weather information available by midday. Our approach minimizes the essential riskiness index, which can simultaneously account for the probability of tardy delivery and the magnitude of lateness. Using wind observation data, we characterize the uncertain flight times via a cluster-wise ambiguity set, which has the benefit of tractability while avoiding overfitting the empirical distribution. A branch-and-cut (B&C) algorithm is developed for this adaptive distributionally framework to improve its scalability. Our adaptive distributionally robust model can effectively reduce lateness in out-of-sample tests compared with other classical models. The proposed B&C algorithm can solve instances to optimality within a shorter time frame than a general modeling toolbox.

Managerial implications: Decision makers can use the adaptive robust model together with the cluster-wise ambiguity set to effectively reduce service lateness at customers for drone delivery systems.

问题定义:无人机送货由于其相较于其他送货选项具有更快且成本更低的潜力,近年来受到广泛关注。在从配送中心调度无人机进行各地送货时,调度员必须考虑不确定的风力条件,这会影响无人机到达目的地的送货时间,从而导致延误送货。

方法论/结论:为了减少由风力不确定性引起的送货延误风险,我们提出了一个两阶段的无人机调度模型,从而鲁棒性地优化送货时间表。在这个框架中,早晨做出调度决策,并预留不同的下午送货时间表,以适应中午更新的天气信息。我们的方法最小化了一个重要的风险指数,该指数可以同时考虑送货迟延的概率和迟延的程度。利用风力观测数据,我们通过集群模糊集来描述不确定的飞行时间,这样可以在避免过度拟合经验分布的同时保持可处理性。我们开发了一个Branch & Cut算法来提高这个自适应分布鲁棒框架的可扩展性。在样本外测试中,我们的自适应分布鲁棒模型相比其他传统模型能有效减少延迟。我们提出的B&C算法可以在比一般建模工具更短的时间内求解到最优解。

管理启示:决策者可以使用自适应鲁棒模型和集群模糊集,有效减少无人机送货系统在顾客服务上的延迟。

推荐文章2

● 题目:Frontiers in Operations: Valuing Nursing Productivity in Emergency Departments

运筹学前沿:评估急诊科护理生产力的价值

● 发布时间:2024.05.08

 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/msom.2023.0039

● 作者:Hao Ding , Sokol Tushe , Diwas Singh KC , Donald K. K. Lee

● 摘要

Problem definition: We quantify the increase in productivity in emergency departments (EDs) from increasing nurse staff. We then estimate the associated revenue gains for the hospital and the associated welfare gains for society. The United States is over a decade into the worst nursing shortage crisis in history fueled by chronic underinvestment. To demonstrate to hospital managers and policymakers the benefits of investing in nursing, we clarify the positive downstream effects of doing so in the ED setting.

Methodology/results: We use a high-resolution data set of patient visits to the ED of a major U.S. academic hospital. Time-dependent hazard estimation methods (nonparametric and parametric) are used to study how the real-time service speed of a patient varies with the state of the ED, including the time-varying workloads of the assigned nurse. A counterfactual simulation is used to estimate the gains from increasing nursing staff in the ED. We find that lightening a nurse’s workload by one patient is associated with a 14% service speedup for every patient under the nurse’s care. Simulation studies suggest that adding one more nurse to the busiest 12-hour shift of each day can shorten stays and avert $160,000 in lost patient wages per 10,000 visits. The reduction in service times also frees up capacity for treating more patients and generates $470,000 in additional net revenues for the hospital per 10,000 visits. Extensive sensitivity analyses suggest that our key message—that investing in nursing will more than pay for itself — is likely to hold across a wide range of EDs.

Managerial implications: In determining whether to invest in more nursing resources, hospital managers need to look beyond whether payer reimbursements alone are sufficient to cover the up-front costs to also account for the resulting downstream benefits.

问题定义:我们量化了通过增加护士人员数量在急诊科(ED)中提高生产力的效果。然后,我们估算了医院的相关收入增益以及社会的相关福利增益。美国已经进入了历史上护士短缺危机最严重的十年之久,这是由长期的投资不足所引发的。为了向医院管理者和决策者展示投资于护理的好处,我们阐明了在急诊科设置中这样做的积极后果。

方法论/结果:我们使用一家美国一流学术医院急诊科患者就诊的高精度数据集。我们采用时间相关的风险估计方法(非参数和参数方法)来研究患者实时服务速度与急诊科状态之间的变化,包括分配给护士的工作负载的时间变化。我们使用反事实模拟来估算增加急诊科护士人员的收益。我们发现,为一名护士的工作负荷减轻一个患者,可使护士照顾的每个患者的服务速度提高14%。模拟研究表明,在每天最繁忙的12小时班次中增加一名护士可以缩短住院时间,并节省每10,000次就诊中16万美元的患者误工费。服务时间的减少还可以为治疗更多患者释放出容量,并为医院每10,000次就诊产生47万美元的额外净收入。广泛的灵敏度分析表明,我们的主要观点——投资于护理将更加划算——可能适用于各种急诊科。

管理启示:在决定是否投资更多护理资源时,医院管理者除了考虑支付方报销是否足以覆盖前期成本以外,还需要考虑到由此产生的下游收益。

推荐文章3

● 题目:The Effects of Selling Formats and Upstream Competition on Product Pricing and Quality Design

销售形式和上游竞争对产品定价和质量设计的影响

● 发布时间:2024.05.14

 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/msom.2022.0470

● 作者:Lu Hsiao , Xin Ma , Ying-Ju Chen

● 摘要

Problem definition: In practice, consumers are directly or indirectly connected with branded manufacturers through intermediaries across industries. In this paper, we explore the effects of different selling formats on product quality and price depending on consumer valuations in a market. We employ a distribution family to comprehensively capture the heterogeneity of consumer valuations. Motivated by realistic phenomena, consumer valuations are used to investigate strategic decisions under different selling formats that are not trivial to analyze.

Methodology/results: We develop game-theoretical models to examine the equilibrium decisions of stakeholders. The impact of consumer valuations is investigated and validated using sensitivity analysis, and the results are connected to practice. First, we find that agency selling induces a premium quality and maximizes the channel profit; remarkably, a nonmonotonic (approximate U-shaped) relationship exists between the agency fee and consumer valuations. A higher consumer surplus can be achieved in an agency selling channel compared with a reselling channel, particularly when targeting a mass of high-end consumers. Second, by examining distinct consumer valuations, maintaining top-notch quality and the highest price in an agency selling channel is not universally viable under some conditions. Third, in the case of production-level competition, an agency selling format tends to cause product quality to vary noticeably. Moreover, in the hybrid selling channel, in contrast to agency selling, the high-type manufacturer reduces both quality and price, which bolsters the overall profits of the channel and the consumer surplus.

Managerial implications: Branded manufacturers can efficiently respond to individualized consumer needs in a centralized distribution channel. In contrast, for selling basic products, the reselling channel could contribute to achieving economies of scale and offering competitive prices. In the agency selling channel, standardized pricing determined by branded manufacturers can create a consistent perception of product quality throughout the distribution network.

问题定义:在实践中,消费者通过跨行业的中介直接或间接地与品牌制造商相连。本文探讨了在市场中根据消费者估值探讨不同销售形式对产品质量和价格的影响。我们采用一个分布族来全面捕捉消费者估值的异质性。受现实现象的启发,消费者估值被用来研究在不同销售形式下的战略决策,只是这些决策并不容易分析。

方法论/结果:我们开发了博弈论模型来研究利益相关者的均衡决策。通过灵敏度分析来研究和验证消费者估值的影响,并将结果与实践联系起来。首先,我们发现代理销售导致了高品质,并最大化了渠道利润;值得注意的是,在代理费用和消费者估值之间存在非单调(近似U形)关系。与再销售渠道相比,面向大量高端消费者时在代理销售渠道中可以实现更高的消费者剩余。其次,通过研究不同的消费者估值,我们发现保持顶级品质和最高价格在代理销售渠道中并非普遍可行。第三,在生产水平竞争的情况中,代理销售形式往往会导致产品质量明显变化。此外,在混合销售渠道中,与代理销售相比,高端制造商降低了品质和价格,从而增加了整个渠道和消费者剩余的总体利润。

管理启示:品牌制造商可以在集中式分销渠道中有效地满足个性化消费者需求。相比之下,对于销售基本产品,再销售渠道有助于实现规模经济并提供具有竞争力的价格。在代理销售渠道中,由品牌制造商确定的标准定价可以在整个分销网络中创建一致的产品质量感知。

推荐文章4

● 题目:Frontiers in Operations: Employees vs. Contractors: An Operational Perspective

运筹前沿:员工与承包商:一个运营视角

● 发布时间:2024.05.17

 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/msom.2023.0029

● 作者:Ilan Lobel , Sébastien Martin , Haotian Song

● 摘要

Problem definition: We consider a platform’s problem of how to staff its operations given the possibilities of hiring employees and setting up a contractor marketplace. We aim to understand the operational difference between these two work arrangement models.

Methodology/results: We consider a model where demand is not only stochastic but also evolving over time, which we capture via a state of the world that determines the demand distribution. In the case of employees, the platform controls the number of employee hours it uses for serving demand, whereas in the case of contractors, it sets the wage paid to them per utilized hour. We show that although the employee problem is equivalent to a standard newsvendor, the contractor one corresponds to an unusual version of the newsvendor model where utilization is the control variable.

Managerial implications: This distinction makes the contractor model more flexible, allowing us to prove that it performs significantly better, especially if the order of magnitude of demand is unknown. Meanwhile, hybrid solutions that combine both employees and contractors have complex optimal solutions and offer relatively limited benefits relative to a contractor marketplace.

问题定义:考虑到雇佣员工和建立承包商市场的可能性,我们考虑了一个平台如何组织其运营工作的问题。我们旨在理解这两种工作安排模式之间的运营差异。

方法论/结果:我们考虑了一个模型,其中需求不仅是随机的,而且随着时间的推移而发展进化,我们通过决定需求分布的普遍状态来捕捉这一点。在雇佣员工的情况中,平台控制其用于满足需求的员工工时数量,而在承包商的情况中,它设定给予他们的每个利用小时的工资。我们表明,员工问题等价于标准的报童模型,而承包商问题等价于一个不常规的报童版本,其中利用率是控制变量。

管理启示:这一区分使承包商模型更加灵活,我们证明了它在需求的数量级是未知的情况下表现得明显更好,与此同时,将员工和承包商结合的混合解决方案具有复杂的最优解,然而相对于承包商市场,其提供的好处相对有限。

推荐文章5

● 题目:Pooling and Boosting for Demand Prediction in Retail: A Transfer Learning Approach

零售需求预测中的汇聚和增强:一种迁移学习方法

● 发布时间:2024.05.30

 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/msom.2022.0453

● 作者:Dazhou Lei , Yongzhi Qi, Sheng Liu , Dongyang Geng, Jianshen Zhang, Hao Hu, Zuo-Jun Max Shen

● 摘要

Problem definition: How should retailers leverage aggregate (category) sales information for individual product demand prediction? Motivated by inventory risk pooling, we develop a new prediction framework that integrates category-product sales information to exploit the benefit of pooling.

Methodology/results: We propose to combine data from different aggregation levels in a transfer learning framework. Our approach treats the top-level sales information as a regularization for fitting the bottom-level prediction model. We characterize the error performance of our model in linear cases and demonstrate the benefit of pooling. Moreover, our approach exploits a natural connection to regularized gradient boosting trees that enable a scalable implementation for large-scale applications. Based on an internal study with JD.com on more than 6,000 weekly observations between 2020 and 2021, we evaluate the out-of-sample forecasting performance of our approach against state-of-the-art benchmarks. The result shows that our approach delivers superior forecasting performance consistently with more than 9% improvement over the benchmark method of JD.com. We further validate its generalizability on a Walmart retail data set and through alternative pooling and prediction methods.

Managerial implications: Using aggregate sales information directly may not help with product demand prediction. Our result highlights the value of transfer learning to demand prediction in retail with both theoretical and empirical support. Based on a conservative estimate of JD.com, the improved forecasts can reduce the operating cost by 0.01–0.29 renminbi (RMB) per sold unit on the retail platform, which implies significant cost savings for the low-margin e-retail business.

问题定义:零售商如何利用汇总(类别)销售信息进行个别产品需求预测?受库存风险汇集的启发,我们开发了一个新的预测框架,该框架整合了类别-产品销售信息,以利用Pooling汇总的优势。

方法论/结果:我们提出在一个迁移学习框架中结合不同聚合级别的数据。我们的方法将顶层销售信息视为底层预测模型的正则化项。我们表征了我们模型在线性情况下的误差性能,并展示了Pooling的好处。此外,我们的方法利用了与正则化梯度增强树的自然连接,从而实现了大规模应用的可扩展实现。基于与京东的内部研究,涵盖了2020年至2021年间超过6,000个周观察数据,我们评估了我们方法在样本外的预测性能,并与最先进的基线进行了对比。结果显示,我们的方法在京东的基线方法上持续提供了优越的预测性能,提高了超过9%。我们进一步在沃尔玛零售数据集上验证了其泛化性能,以及通过其他汇集和预测方法。

管理启示:直接使用汇总销售信息可能不利于产品需求预测。我们的结果突显了迁移学习在零售需求预测中的价值,具有理论和经验支持。根据京东的保守估计,改进的预测可以将零售平台上每单位的运营成本降低0.01至0.29人民币(RMB),这意味着对于低利润的电子零售业务而言,可实现显著的成本节省。

推荐文章6

● 题目:Should Only Popular Products Be Stocked? Warehouse Assortment Selection for E-Commerce Companies

应该只储存热门产品吗?电子商务公司的仓库商品选择

● 发布时间:2024.05.30

 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/msom.2022.0428

● 作者:Xiaobo Li , Hongyuan Lin , Fang Liu

● 摘要

Problem definition: This paper studies the single-warehouse assortment selection problem that aims to minimize the order fulfillment cost under the cardinality constraint. We propose two fulfillment-related cost functions corresponding to spillover fulfillment and order splitting. This problem includes the fill rate maximization problem as a special case. We show that although the objective function is submodular for a broad class of cost functions, the fill rate maximization problem with the largest order size being two is NP-hard.

Methodology/results: To make the problem tractable to solve, we formulate the general warehouse assortment problem under the two types of cost functions as mixed integer linear programs (MILPs). We also provide a dynamic programming algorithm to solve the problem in polynomial time if orders are nonoverlapping. Furthermore, we propose a simple heuristic called the marginal choice indexing (MCI) policy that allows the warehouse to store the most popular products. This policy is easy to compute, and hence, it is scalable to large-size problems. Although the performance of MCI can be arbitrarily bad in some extreme scenarios, we find a general condition under which it is optimal. This condition is satisfied by many multi-purchase choice models.

Managerial implications: Through extensive numerical experiments on a real-world data set from RiRiShun Logistics, we find that the MCI policy is surprisingly near optimal in all the settings we tested. Simply applying the MCI policy, the fill rate is estimated to improve by 9.18% on average compared with the current practice for the local transfer centers on the training data set. More surprisingly, the MCI policy outperforms the MILP optimal solution in 14 of 25 cases on the test data set, illustrating its robustness against demand fluctuations.

问题定义:本文研究了在基数约束下最小化订单履行成本的单一仓库组合选择问题。我们提出了两种与履行相关的成本函数,分别对应于溢出履行和订单拆分。该问题将填充率最大化问题囊括进来作为一种特殊情况。我们证明了尽管目标函数对于广泛类别的成本函数是子模的,但最大订单大小为两个的填充率最大化问题是 NP-Hard的。

方法/结果:为了使问题易于解决,我们将在两种类型的成本函数下的一般仓库组合问题表述为混合整数线性规划(MILP)。如果订单不重叠,我们还提供了一个动态规划算法来在多项式时间内解决该问题。此外,我们提出了一种简单的启发式算法,称为边际选择索引(MCI)策略,允许仓库存储最受欢迎的产品。这个策略易于计算,因此对于大规模问题是可扩展的。尽管在一些极端情况下,MCI 的性能可能会极差,但我们发现了一个一般条件,在该条件下它是最优的,此外这个条件被不少多重选购选择模型所满足。

管理意义:通过对来自日日顺物流的真实数据集进行大量数值实验,我们发现 MCI 策略在我们测试的所有设置中都令人惊讶地接近最优。仅应用 MCI 策略,据估计,与当前实践相比,训练数据集中的地方转运中心的填充率平均提高了 9.18%。更令人惊讶的是,MCI 策略在测试数据集中的 25 个案例中有 14 个超过了 MILP 最优解,说明它对需求波动具有很强的鲁棒性。

相关文章:

论文导读 | Manufacturing Service Operations Management近期文章精选

编者按 在本系列文章中,我们梳理了顶刊Manufacturing & Service Operations Management5月份发布有关OR/OM以及相关应用的文章之基本信息,旨在帮助读者快速洞察行业/学界最新动态。 推荐文章1 ● 题目:Robust Drone Delivery with Weath…...

【Linux命令】top linux下的任务管理器

一、概述 top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态。如果在前台执行该命令,它将独占前台&#…...

2024年在分数限制下,选好专业还是选好学校?

分数限制下,选好专业还是选好学校? 24年高考帷幕落下,一场新的思考与选择悄然来临。对于每一位高考考生,学校和专业都是开启大学新生活的两个前置必选项。但有时候“鱼与熊掌不可兼得”,在分数受限的条件下&#xff0…...

cropperjs 裁剪/框选图片

1.效果 2.使用组件 <!-- 父级 --><Cropper ref"cropperRef" :imgUrl"url" searchImg"searchImg"></Cropper>3.封装组件 <template><el-dialog :title"title" :visible.sync"dialogVisible" wi…...

ArkTS开发系列之事件(2.8.2手势事件)

上篇回顾&#xff1a;ArkTS开发系列之事件&#xff08;2.8.1触屏、键鼠、焦点事件&#xff09; 本篇内容&#xff1a;ArkTS开发系列之事件&#xff08;2.8.2手势事件&#xff09; 一、绑定手势方法 1. 常规手势绑定方法 Text(手势).fontSize(44).gesture(TapGesture().onAct…...

【MATLAB源码-第135期】基于matlab的变色龙群优化算法CSA)机器人栅格路径规划,输出做短路径图和适应度曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 变色龙群优化算法&#xff08;Chameleon Swarm Algorithm&#xff0c;CSA&#xff09;是一种新颖的群体智能优化算法&#xff0c;受到自然界中变色龙捕食和社交行为的启发。变色龙以其独特的适应能力而著称&#xff0c;能够根…...

使用Python实现深度学习模型:语言模型与文本生成

语言模型是自然语言处理中的核心任务之一,它们用于预测文本中的下一个单词或生成与输入文本相关的新文本。本文将详细介绍如何使用Python实现一个语言模型,并通过这个模型进行文本生成。 我们将使用TensorFlow和Hugging Face的Transformers库来实现这一任务。 1. 语言模型简…...

大数据面试题之Hive(3)

目录 Hive的函数:UDF、UDAF、UDTF的区别? UDF是怎么在Hive里执行的 row_number&#xff0c;rank&#xff0c;dense_rank的区别 Hive count(distinct)有几个reduce&#xff0c;海量数据会有什么问题 HQL&#xff1a;行转列、列转行 一条HQL从代码到执行的过程 了解Hive S…...

华为OD机考题HJ17 坐标移动

前言 应广大同学要求&#xff0c;开始以OD机考题作为练习题&#xff0c;看看算法和数据结构掌握情况。有需要练习的可以关注下。 描述 开发一个坐标计算工具&#xff0c; A表示向左移动&#xff0c;D表示向右移动&#xff0c;W表示向上移动&#xff0c;S表示向下移动。从&am…...

redis修改密码

在Redis中&#xff0c;修改密码通常涉及编辑Redis配置文件或者在运行时通过Redis命令动态修改。 温馨提示&#xff1a;&#xff08;运行时直接参考第2条&#xff09; 1.编辑配置文件&#xff1a; 找到Redis配置文件redis.conf&#xff0c;通常位于/etc/redis/或/usr/local/e…...

《昇思 25 天学习打卡营第 7 天 | 模型训练 》

《昇思 25 天学习打卡营第 7 天 | 模型训练 》 活动地址&#xff1a;https://xihe.mindspore.cn/events/mindspore-training-camp 签名&#xff1a;Sam9029 模型训练 本章节-结合前几张的内容所讲-算是一节综合实践 mindscope 框架使用张量 数据类型数据集下载与加载网络构建函…...

HTML/CSS 基础

1、<input type"checkbox" checked> checked 默认选中为复选框 2、表格中的标题<caption> 3、文字标签直接加 title 4、<dl>为自定义列表的整体&#xff0c;包裹<dt><dd> <dt>自定义列表的主题 <dd>主题的每一项内容 5、…...

Linux系统安装Lua语言及Lua外部库

安装Lua Lua语言是一种轻量级、高效且可扩展的脚本语言&#xff0c;具有简洁易学的语法和占用资源少的特点。它支持动态类型&#xff0c;提供了丰富的表达式和运算符&#xff0c;同时具备自动垃圾回收机制和跨平台性。Lua语言易于嵌入到其他应用程序中&#xff0c;并可与其他语…...

前端技术栈学习:Vue2、Vue cli脚手架、ElementUI组件库、Axios

1 基本介绍 &#xff08;1&#xff09;Vue 是一个前端框架, 易于构建用户界面 &#xff08;2&#xff09;Vue 的核心库只关注视图层&#xff0c;不仅易于上手&#xff0c;还便于与第三方库或项目整合 &#xff08;3&#xff09;支持和其它类库结合使用 &#xff08;4&#…...

pycharm中取消Typo:In word ‘xxx‘提示(绿色波浪线提示)的方法

#事故现场 使用pycharm写python代码出现绿色波浪线的提示&#xff0c;并提示Typo:In word ‘xxx’&#xff0c;这是pycharm检测到单词拼写错误、不规范&#xff1b; 那如何取消这种提示呢&#xff1f; #解决方法 方法一&#xff1a;Settings → Editor → Inspections → P…...

js中的浅拷贝和深拷贝

浅拷贝Shallow Copy 浅拷贝只复制对象的顶层属性及其引用&#xff0c;而不复制这些引用所指向的对象。如果原始对象中的某个属性是一个对象或数组&#xff0c;那么浅拷贝后的对象将包含对这个内部对象或数组的引用&#xff0c;而不是这个对象或数组的一个新副本。 let obj1 …...

【Linux】常用基本命令

wget网址用于直接从网上下载某个文件到服务器&#xff0c;当然也可以直接从网上先把东西下到本地然后用filezilla这个软件来传输到服务器上。 当遇到不会的命令时候&#xff0c;可以使用man “不会的命令”来查看这个命令的详细信息。比如我想要看看ls这个命令的详细用法&…...

uniapp——上传图片获取到file对象而非临时地址——基础积累

最近在看uniapp的代码&#xff0c;遇到一个需求&#xff0c;就是要实现上传图片的功能 uniapp 官网地址&#xff1a;https://uniapp.dcloud.net.cn/ 上传图片有对应的API&#xff1a; uni.chooseImage方法&#xff1a;https://uniapp.dcloud.net.cn/api/media/image.html#choo…...

vue3 antdv RadioButton默认值选择问题处理

1、先上官方文档&#xff1a; Ant Design Vue — An enterprise-class UI components based on Ant Design and Vue.js 官方代码&#xff1a; <template><div><div><a-radio-group v-model:value"value1"><a-radio-button value"a…...

最佳实践,一款基于 Flutter 的桌面应用

前言 这篇文章介绍作为一名后端开发人员&#xff0c;快速的入门前端或者客户端一些相关的技术的心得。先来说说为什么作为一名后端开发人员也需要学习一些前端或者客户端相关的技术。通常来说&#xff0c;深耕一个领域没有错&#xff0c;因为社会常常就是这样分工的&#xff0…...

python第一个多进程爬虫

使用 multiprocessing 模块实现多进程爬取股票网址买卖数据的基本思路是&#xff1a; 定义爬虫函数&#xff0c;用于从一个或多个股票网址上抓取数据。创建多个进程&#xff0c;每个进程执行爬虫函数&#xff0c;可能针对不同的股票或不同的网页。使用 multiprocessing.Queue …...

在Ubuntu 18.04上安装和配置Ansible的方法

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 简介 配置管理系统旨在简化对大量服务器的控制&#xff0c;适用于管理员和运维团队。它们允许您从一个中央位置以自动化的方式控制许多…...

【详细教程】如何使用YOLOv10进行图片与视频的目标检测

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…...

LLM大语言模型-AI大模型全面介绍

简介&#xff1a; 大语言模型&#xff08;LLM&#xff09;是深度学习的产物&#xff0c;包含数十亿至数万亿参数&#xff0c;通过大规模数据训练&#xff0c;能处理多种自然语言任务。LLM基于Transformer架构&#xff0c;利用多头注意力机制处理长距离依赖&#xff0c;经过预训…...

瑜伽馆管理系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;教练管理&#xff0c;用户管理&#xff0c;瑜伽管理&#xff0c;套餐管理&#xff0c;体测报告管理&#xff0c;基础数据管理 前台账户功能包括&#xff1a;系统首页&#xff0…...

JAVA【案例5-2】模拟默认密码自动生成

【模拟默认密码自动生成】 1、案例描述 本案例要求编写一个程序&#xff0c;模拟默认密码的自动生成策略&#xff0c;手动输入用户名&#xff0c;根据用户名自动生成默认密码。在生成密码时&#xff0c;将用户名反转即为默认的密码。 2、案例目的 &#xff08;1&#xff09…...

小区业主管理系统

摘 要 随着城市化进程的加速和人口的不断增加&#xff0c;小区的数量也在不断增加。小区作为城市居民居住的主要场所&#xff0c;其管理工作也变得越来越重要。传统的小区业主管理方式存在诸多问题&#xff0c;如信息传递不畅、业务处理效率低下等。因此&#xff0c;开发一个高…...

vncsever ,window 远程ubuntu远程界面安装方式,VNC Viewer安装教程+ linux配置server 操作

linux 端安装 # 安装VNC 服务器软件 sudo apt install autocutsel # 剪切黏贴操作支持的包 sudo apt-get install tightvncserver # 安装的是 VNC 服务器软件&#xff0c;用于远程桌面访问 # 安装Xfce桌面环境 sudo apt-get install xfce4 xfce4-goodies #安装的是 XFCE 桌…...

java spring boot 单/多文件上传/下载

文章目录 使用版本文件上传服务端客户端&#xff08;前端&#xff09;方式一方式二 文件下载服务端客户端&#xff08;前端&#xff09; 代码仓库地址 使用版本 后端 spring-boot 3.3.0jdk17 前端 vue “^3.3.11”vite “^5.0.8”axios “^1.7.2” 文件上传 上传文件比较…...

C语言的内存函数

1. memcpy使⽤和模拟实现 1 void * memcpy ( void * destination, const void * source, size_t num ); • 函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置。 • 这个函数在遇到 \0 的时候并不会停下来。 • 如果source和destination有任…...