当前位置: 首页 > news >正文

昇思25天学习打卡营第2天|张量Tensor

张量Tensor

    • 创建张量
      • 张量的属性
      • 张量索引
      • 张量运算
    • 稀疏张量
  • 总结

简单讲讲张量,数学和物理学界以一种方式定义张量,机器学习上则是以另一种方式定义张量,这里的张量也与神经网络联系紧密,神经网络需要进行大量的数学计算,也是张量被设计出来的目的。

张量是存储输入数据的方式,还存储构成神经网络的权重和偏置。

当输入是单一图像时,大多数编程语言会称之为矩阵,这里称为二维张量。
当输入是视频时,大多数编程语言会称之为多维矩阵或多维数组,这里称为n维张量。

听起来有点无聊,大家会认为不过是换个名字,张量到底有什么用呢?
张量是设计用来利用硬件加速的优势
也能通过自动微分处理反向传播

张量也是MindSpore网络运算中的基本数据结构

# 导包
import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor, CSRTensor, COOTensor

创建张量

  • 根据数据直接生成
data = [1, 0, 1, 0]
x_data = Tensor(data)
print(x_data, x_data.shape, x_data.dtype)
  • 从NumPy数组生成
np_array = np.array(data)
x_np = Tensor(np_array)
print(x_np, x_np.shape, x_np.dtype)

上面两种方式输出结果都是[1 0 1 0] (4,) Int64

  • 使用init初始化器构造张量
from mindspore.common.initializer import One, Normal# Initialize a tensor with ones
tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())
# Initialize a tensor from normal distribution
tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())print("tensor1:\n", tensor1)
print("tensor2:\n", tensor2)

输出结果:
tensor1:
[[1. 1.]
[1. 1.]]
tensor2:
[[-0.00063482 -0.00916224]
[ 0.01324238 -0.0171206 ]]

One是生成一个值全为1的常量数组用于初始化Tensor。
Normal是生成一个服从正态分布的随机数组用于初始化Tensor。
在这里插入图片描述

  • 继承另一个张量的属性,形成新的张量
from mindspore import opsx_ones = ops.ones_like(x_data)
print(f"Ones Tensor: \n {x_ones} \n")x_zeros = ops.zeros_like(x_data)
print(f"Zeros Tensor: \n {x_zeros} \n")

Ones Tensor:
[1 1 1 1]

Zeros Tensor:
[0 0 0 0]

张量的属性

张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。

张量索引

Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:和 …用于对数据进行切片。

张量运算

张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似.

Tensor能与NumPy相互转换

  • Tensor转换为NumPy
t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))

t: [1. 1. 1. 1. 1.] <class ‘mindspore.common.tensor.Tensor’>
n: [1. 1. 1. 1. 1.] <class ‘numpy.ndarray’>

  • NumPy转换为Tensor
n = np.ones(5)
t = Tensor.from_numpy(n)
np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))

n: [2. 2. 2. 2. 2.] <class ‘numpy.ndarray’>
t: [2. 2. 2. 2. 2.] <class ‘mindspore.common.tensor.Tensor’>

稀疏张量

稀疏张量是一种特殊张量,其中绝大部分元素的值为零。普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销,所以引入稀疏矩阵存储。

MindSpore现在已经支持最常用的CSR和COO两种稀疏数据格式。

总结

感觉张量就是另类的矩阵,会使用会看会计算就行

相关文章:

昇思25天学习打卡营第2天|张量Tensor

张量Tensor 创建张量张量的属性张量索引张量运算 稀疏张量 总结 简单讲讲张量&#xff0c;数学和物理学界以一种方式定义张量&#xff0c;机器学习上则是以另一种方式定义张量&#xff0c;这里的张量也与神经网络联系紧密&#xff0c;神经网络需要进行大量的数学计算&#xff0…...

[leetcode]valid-triangle-number. 有效三角形的个数

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int triangleNumber(vector<int>& nums) {int n nums.size();sort(nums.begin(), nums.end());int ans 0;for (int i 0; i < n; i) {for (int j i 1; j < n; j) {int left j 1, righ…...

java SQL server 多实例的情况

而对于java&#xff0c;对付多个数据库实例就有些要注意的了&#xff1a; 首先&#xff0c;同样连接字符串上加上“\实例名”&#xff1a; jdbc:sqlserver://127.0.0.1\\mssqlserver2008;DatabaseNameLPT; 此处应去掉端口1433。因为连接数据库自命名实例的url中没有端口号1433…...

html--404页面

<!DOCTYPE html> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetUTF-8"> <meta http-equiv"X-UA-Compatible" content"IEedge,chrome1"> <title>404 错误页面不存在&…...

[word] Word如何删除所有的空行? #职场发展#学习方法

Word如何删除所有的空行&#xff1f; 很多网友从网页复制文字粘贴到word文档后发现段落之间有空行&#xff0c;如果文字不多&#xff0c;手动删除这些空行也没有多少工作量&#xff0c;但是如果文字的字数达到成千上万&#xff0c;一个个手动删除这些空行还是很繁琐的。那么&a…...

【CSS】深入探讨 CSS 的 `calc()` 函数

深入探讨 CSS 的 calc() 函数 calc() 是一个 CSS 函数&#xff0c;用于在样式表中进行数学计算&#xff0c;从而动态地设置 CSS 属性值。它允许开发者在指定长度、百分比、数值等时&#xff0c;进行加减乘除运算。通过 calc() 函数&#xff0c;我们可以实现更灵活和响应式的设…...

MongoDB异地备份数据文件脚本(带日志打印,便于排查)

此脚本是以文件夹的形式备份&#xff0c;非压缩包形式 如需备份成加密压缩包&#xff0c;可用此脚本&#xff1a;MongoDB定时异地备份所有数据库为加密压缩包-CSDN博客 1.可以直接下载本文件使用&#xff0c;将其放到mongo安装目录的bin目录下&#xff08;可手动执行&#xf…...

论文导读 | Manufacturing Service Operations Management近期文章精选

编者按 在本系列文章中&#xff0c;我们梳理了顶刊Manufacturing & Service Operations Management5月份发布有关OR/OM以及相关应用的文章之基本信息&#xff0c;旨在帮助读者快速洞察行业/学界最新动态。 推荐文章1 ● 题目&#xff1a;Robust Drone Delivery with Weath…...

【Linux命令】top linux下的任务管理器

一、概述 top命令是Linux下常用的性能分析工具&#xff0c;能够实时显示系统中各个进程的资源占用状况&#xff0c;类似于Windows的任务管理器。top是一个动态显示过程&#xff0c;即可以通过用户按键来不断刷新当前状态。如果在前台执行该命令&#xff0c;它将独占前台&#…...

2024年在分数限制下,选好专业还是选好学校?

分数限制下&#xff0c;选好专业还是选好学校&#xff1f; 24年高考帷幕落下&#xff0c;一场新的思考与选择悄然来临。对于每一位高考考生&#xff0c;学校和专业都是开启大学新生活的两个前置必选项。但有时候“鱼与熊掌不可兼得”&#xff0c;在分数受限的条件下&#xff0…...

cropperjs 裁剪/框选图片

1.效果 2.使用组件 <!-- 父级 --><Cropper ref"cropperRef" :imgUrl"url" searchImg"searchImg"></Cropper>3.封装组件 <template><el-dialog :title"title" :visible.sync"dialogVisible" wi…...

ArkTS开发系列之事件(2.8.2手势事件)

上篇回顾&#xff1a;ArkTS开发系列之事件&#xff08;2.8.1触屏、键鼠、焦点事件&#xff09; 本篇内容&#xff1a;ArkTS开发系列之事件&#xff08;2.8.2手势事件&#xff09; 一、绑定手势方法 1. 常规手势绑定方法 Text(手势).fontSize(44).gesture(TapGesture().onAct…...

【MATLAB源码-第135期】基于matlab的变色龙群优化算法CSA)机器人栅格路径规划,输出做短路径图和适应度曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 变色龙群优化算法&#xff08;Chameleon Swarm Algorithm&#xff0c;CSA&#xff09;是一种新颖的群体智能优化算法&#xff0c;受到自然界中变色龙捕食和社交行为的启发。变色龙以其独特的适应能力而著称&#xff0c;能够根…...

使用Python实现深度学习模型:语言模型与文本生成

语言模型是自然语言处理中的核心任务之一,它们用于预测文本中的下一个单词或生成与输入文本相关的新文本。本文将详细介绍如何使用Python实现一个语言模型,并通过这个模型进行文本生成。 我们将使用TensorFlow和Hugging Face的Transformers库来实现这一任务。 1. 语言模型简…...

大数据面试题之Hive(3)

目录 Hive的函数:UDF、UDAF、UDTF的区别? UDF是怎么在Hive里执行的 row_number&#xff0c;rank&#xff0c;dense_rank的区别 Hive count(distinct)有几个reduce&#xff0c;海量数据会有什么问题 HQL&#xff1a;行转列、列转行 一条HQL从代码到执行的过程 了解Hive S…...

华为OD机考题HJ17 坐标移动

前言 应广大同学要求&#xff0c;开始以OD机考题作为练习题&#xff0c;看看算法和数据结构掌握情况。有需要练习的可以关注下。 描述 开发一个坐标计算工具&#xff0c; A表示向左移动&#xff0c;D表示向右移动&#xff0c;W表示向上移动&#xff0c;S表示向下移动。从&am…...

redis修改密码

在Redis中&#xff0c;修改密码通常涉及编辑Redis配置文件或者在运行时通过Redis命令动态修改。 温馨提示&#xff1a;&#xff08;运行时直接参考第2条&#xff09; 1.编辑配置文件&#xff1a; 找到Redis配置文件redis.conf&#xff0c;通常位于/etc/redis/或/usr/local/e…...

《昇思 25 天学习打卡营第 7 天 | 模型训练 》

《昇思 25 天学习打卡营第 7 天 | 模型训练 》 活动地址&#xff1a;https://xihe.mindspore.cn/events/mindspore-training-camp 签名&#xff1a;Sam9029 模型训练 本章节-结合前几张的内容所讲-算是一节综合实践 mindscope 框架使用张量 数据类型数据集下载与加载网络构建函…...

HTML/CSS 基础

1、<input type"checkbox" checked> checked 默认选中为复选框 2、表格中的标题<caption> 3、文字标签直接加 title 4、<dl>为自定义列表的整体&#xff0c;包裹<dt><dd> <dt>自定义列表的主题 <dd>主题的每一项内容 5、…...

Linux系统安装Lua语言及Lua外部库

安装Lua Lua语言是一种轻量级、高效且可扩展的脚本语言&#xff0c;具有简洁易学的语法和占用资源少的特点。它支持动态类型&#xff0c;提供了丰富的表达式和运算符&#xff0c;同时具备自动垃圾回收机制和跨平台性。Lua语言易于嵌入到其他应用程序中&#xff0c;并可与其他语…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...