昇思25天学习打卡营第2天|张量Tensor
张量Tensor
- 创建张量
- 张量的属性
- 张量索引
- 张量运算
- 稀疏张量
- 总结
简单讲讲张量,数学和物理学界以一种方式定义张量,机器学习上则是以另一种方式定义张量,这里的张量也与神经网络联系紧密,神经网络需要进行大量的数学计算,也是张量被设计出来的目的。
张量是存储输入数据的方式,还存储构成神经网络的权重和偏置。
当输入是单一图像时,大多数编程语言会称之为矩阵,这里称为二维张量。
当输入是视频时,大多数编程语言会称之为多维矩阵或多维数组,这里称为n维张量。
听起来有点无聊,大家会认为不过是换个名字,张量到底有什么用呢?
张量是设计用来利用硬件加速的优势
也能通过自动微分处理反向传播
张量也是MindSpore网络运算中的基本数据结构
# 导包
import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor, CSRTensor, COOTensor
创建张量
- 根据数据直接生成
data = [1, 0, 1, 0]
x_data = Tensor(data)
print(x_data, x_data.shape, x_data.dtype)
- 从NumPy数组生成
np_array = np.array(data)
x_np = Tensor(np_array)
print(x_np, x_np.shape, x_np.dtype)
上面两种方式输出结果都是[1 0 1 0] (4,) Int64
- 使用init初始化器构造张量
from mindspore.common.initializer import One, Normal# Initialize a tensor with ones
tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())
# Initialize a tensor from normal distribution
tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())print("tensor1:\n", tensor1)
print("tensor2:\n", tensor2)
输出结果:
tensor1:
[[1. 1.]
[1. 1.]]
tensor2:
[[-0.00063482 -0.00916224]
[ 0.01324238 -0.0171206 ]]
One是生成一个值全为1的常量数组用于初始化Tensor。
Normal是生成一个服从正态分布的随机数组用于初始化Tensor。

- 继承另一个张量的属性,形成新的张量
from mindspore import opsx_ones = ops.ones_like(x_data)
print(f"Ones Tensor: \n {x_ones} \n")x_zeros = ops.zeros_like(x_data)
print(f"Zeros Tensor: \n {x_zeros} \n")
Ones Tensor:
[1 1 1 1]
Zeros Tensor:
[0 0 0 0]
张量的属性
张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。
张量索引
Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:和 …用于对数据进行切片。
张量运算
张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似.
Tensor能与NumPy相互转换
- Tensor转换为NumPy
t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))
t: [1. 1. 1. 1. 1.] <class ‘mindspore.common.tensor.Tensor’>
n: [1. 1. 1. 1. 1.] <class ‘numpy.ndarray’>
- NumPy转换为Tensor
n = np.ones(5)
t = Tensor.from_numpy(n)
np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))
n: [2. 2. 2. 2. 2.] <class ‘numpy.ndarray’>
t: [2. 2. 2. 2. 2.] <class ‘mindspore.common.tensor.Tensor’>
稀疏张量
稀疏张量是一种特殊张量,其中绝大部分元素的值为零。普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销,所以引入稀疏矩阵存储。
MindSpore现在已经支持最常用的CSR和COO两种稀疏数据格式。
总结
感觉张量就是另类的矩阵,会使用会看会计算就行
相关文章:
昇思25天学习打卡营第2天|张量Tensor
张量Tensor 创建张量张量的属性张量索引张量运算 稀疏张量 总结 简单讲讲张量,数学和物理学界以一种方式定义张量,机器学习上则是以另一种方式定义张量,这里的张量也与神经网络联系紧密,神经网络需要进行大量的数学计算࿰…...
[leetcode]valid-triangle-number. 有效三角形的个数
. - 力扣(LeetCode) class Solution { public:int triangleNumber(vector<int>& nums) {int n nums.size();sort(nums.begin(), nums.end());int ans 0;for (int i 0; i < n; i) {for (int j i 1; j < n; j) {int left j 1, righ…...
java SQL server 多实例的情况
而对于java,对付多个数据库实例就有些要注意的了: 首先,同样连接字符串上加上“\实例名”: jdbc:sqlserver://127.0.0.1\\mssqlserver2008;DatabaseNameLPT; 此处应去掉端口1433。因为连接数据库自命名实例的url中没有端口号1433…...
html--404页面
<!DOCTYPE html> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetUTF-8"> <meta http-equiv"X-UA-Compatible" content"IEedge,chrome1"> <title>404 错误页面不存在&…...
[word] Word如何删除所有的空行? #职场发展#学习方法
Word如何删除所有的空行? 很多网友从网页复制文字粘贴到word文档后发现段落之间有空行,如果文字不多,手动删除这些空行也没有多少工作量,但是如果文字的字数达到成千上万,一个个手动删除这些空行还是很繁琐的。那么&a…...
【CSS】深入探讨 CSS 的 `calc()` 函数
深入探讨 CSS 的 calc() 函数 calc() 是一个 CSS 函数,用于在样式表中进行数学计算,从而动态地设置 CSS 属性值。它允许开发者在指定长度、百分比、数值等时,进行加减乘除运算。通过 calc() 函数,我们可以实现更灵活和响应式的设…...
MongoDB异地备份数据文件脚本(带日志打印,便于排查)
此脚本是以文件夹的形式备份,非压缩包形式 如需备份成加密压缩包,可用此脚本:MongoDB定时异地备份所有数据库为加密压缩包-CSDN博客 1.可以直接下载本文件使用,将其放到mongo安装目录的bin目录下(可手动执行…...
论文导读 | Manufacturing Service Operations Management近期文章精选
编者按 在本系列文章中,我们梳理了顶刊Manufacturing & Service Operations Management5月份发布有关OR/OM以及相关应用的文章之基本信息,旨在帮助读者快速洞察行业/学界最新动态。 推荐文章1 ● 题目:Robust Drone Delivery with Weath…...
【Linux命令】top linux下的任务管理器
一、概述 top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态。如果在前台执行该命令,它将独占前台&#…...
2024年在分数限制下,选好专业还是选好学校?
分数限制下,选好专业还是选好学校? 24年高考帷幕落下,一场新的思考与选择悄然来临。对于每一位高考考生,学校和专业都是开启大学新生活的两个前置必选项。但有时候“鱼与熊掌不可兼得”,在分数受限的条件下࿰…...
cropperjs 裁剪/框选图片
1.效果 2.使用组件 <!-- 父级 --><Cropper ref"cropperRef" :imgUrl"url" searchImg"searchImg"></Cropper>3.封装组件 <template><el-dialog :title"title" :visible.sync"dialogVisible" wi…...
ArkTS开发系列之事件(2.8.2手势事件)
上篇回顾:ArkTS开发系列之事件(2.8.1触屏、键鼠、焦点事件) 本篇内容:ArkTS开发系列之事件(2.8.2手势事件) 一、绑定手势方法 1. 常规手势绑定方法 Text(手势).fontSize(44).gesture(TapGesture().onAct…...
【MATLAB源码-第135期】基于matlab的变色龙群优化算法CSA)机器人栅格路径规划,输出做短路径图和适应度曲线。
操作环境: MATLAB 2022a 1、算法描述 变色龙群优化算法(Chameleon Swarm Algorithm,CSA)是一种新颖的群体智能优化算法,受到自然界中变色龙捕食和社交行为的启发。变色龙以其独特的适应能力而著称,能够根…...
使用Python实现深度学习模型:语言模型与文本生成
语言模型是自然语言处理中的核心任务之一,它们用于预测文本中的下一个单词或生成与输入文本相关的新文本。本文将详细介绍如何使用Python实现一个语言模型,并通过这个模型进行文本生成。 我们将使用TensorFlow和Hugging Face的Transformers库来实现这一任务。 1. 语言模型简…...
大数据面试题之Hive(3)
目录 Hive的函数:UDF、UDAF、UDTF的区别? UDF是怎么在Hive里执行的 row_number,rank,dense_rank的区别 Hive count(distinct)有几个reduce,海量数据会有什么问题 HQL:行转列、列转行 一条HQL从代码到执行的过程 了解Hive S…...
华为OD机考题HJ17 坐标移动
前言 应广大同学要求,开始以OD机考题作为练习题,看看算法和数据结构掌握情况。有需要练习的可以关注下。 描述 开发一个坐标计算工具, A表示向左移动,D表示向右移动,W表示向上移动,S表示向下移动。从&am…...
redis修改密码
在Redis中,修改密码通常涉及编辑Redis配置文件或者在运行时通过Redis命令动态修改。 温馨提示:(运行时直接参考第2条) 1.编辑配置文件: 找到Redis配置文件redis.conf,通常位于/etc/redis/或/usr/local/e…...
《昇思 25 天学习打卡营第 7 天 | 模型训练 》
《昇思 25 天学习打卡营第 7 天 | 模型训练 》 活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp 签名:Sam9029 模型训练 本章节-结合前几张的内容所讲-算是一节综合实践 mindscope 框架使用张量 数据类型数据集下载与加载网络构建函…...
HTML/CSS 基础
1、<input type"checkbox" checked> checked 默认选中为复选框 2、表格中的标题<caption> 3、文字标签直接加 title 4、<dl>为自定义列表的整体,包裹<dt><dd> <dt>自定义列表的主题 <dd>主题的每一项内容 5、…...
Linux系统安装Lua语言及Lua外部库
安装Lua Lua语言是一种轻量级、高效且可扩展的脚本语言,具有简洁易学的语法和占用资源少的特点。它支持动态类型,提供了丰富的表达式和运算符,同时具备自动垃圾回收机制和跨平台性。Lua语言易于嵌入到其他应用程序中,并可与其他语…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
