当前位置: 首页 > news >正文

偏向锁撤销

偏向状态

一个对象创建时:

  • 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的thread、epoch、age 都为 0。
  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 -XX:BiasedLockingStartupDelay=0 来禁用延迟。
  • 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、 age 都为 0,第一次用到 hashcode 时才会赋值。

1> 测试延迟特性

2> 测试偏向锁

class Dog {}

利用 jol 第三方工具来查看对象头信息

// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0 public static void main(String[] args) throws IOException {Dog d = new Dog();ClassLayout classLayout = ClassLayout.parseInstance(d);new Thread(() -> {log.debug("synchronized 前");System.out.println(classLayout.toPrintableSimple(true));synchronized (d) {log.debug("synchronized 中");System.out.println(classLayout.toPrintableSimple(true));}log.debug("synchronized 后");System.out.println(classLayout.toPrintableSimple(true));}, "t1").start();}

输出

11:08:58.117 c.TestBiased [t1] - synchronized00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101

注意:

处于偏向锁的对象解锁后,线程 id 仍存储于对象头中。

3> 测试禁用

在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁。

输出

11:13:10.018 c.TestBiased [t1] - synchronized00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
11:13:10.021 c.TestBiased [t1] - synchronized00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000 
11:13:10.021 c.TestBiased [t1] - synchronized00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

4> 测试 hashCode

  • 正常状态对象一开始是没有 hashCode 的,第一次调用才生成。

撤销 - 调用对象 hashCode

调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被撤销。

  • 轻量级锁会在锁记录中记录 hashCode
  • 重量级锁会在 Monitor 中记录 hashCode

在调用 hashCode 后使用偏向锁,记得去掉 -XX:-UseBiasedLocking。

输出

11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015 
11:22:10.391 c.TestBiased [t1] - synchronized00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001 
11:22:10.393 c.TestBiased [t1] - synchronized00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000 
11:22:10.393 c.TestBiased [t1] - synchronized00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001

撤销 - 其它线程使用对象

当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁。

 private static void test2() throws InterruptedException {Dog d = new Dog();Thread t1 = new Thread(() -> {synchronized (d) {log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));}synchronized (TestBiased.class) {TestBiased.class.notify();}// 如果不用 wait/notify 使用 join 必须打开下面的注释// 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的/*try {System.in.read();} catch (IOException e) {e.printStackTrace();}*/}, "t1");t1.start();Thread t2 = new Thread(() -> {synchronized (TestBiased.class) {try {TestBiased.class.wait();} catch (InterruptedException e) {e.printStackTrace();}}log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));synchronized (d) {log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));}log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));}, "t2");t2.start();}

输出

[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000 
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

撤销 - 调用 wait/notify

    public static void main(String[] args) throws InterruptedException {Dog d = new Dog();Thread t1 = new Thread(() -> {log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));synchronized (d) {log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));try {d.wait();} catch (InterruptedException e) {e.printStackTrace();}log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));}}, "t1");t1.start();new Thread(() -> {try {Thread.sleep(6000);} catch (InterruptedException e) {e.printStackTrace();}synchronized (d) {log.debug("notify");d.notify();}}, "t2").start();}

输出

[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101 
[t2] - notify 
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010

批量重偏向

如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象
的 Thread ID。

当撤销偏向锁阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程。

   private static void test3() throws InterruptedException {Vector<Dog> list = new Vector<>();Thread t1 = new Thread(() -> {for (int i = 0; i < 30; i++) {Dog d = new Dog();list.add(d);synchronized (d) {log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}}synchronized (list) {list.notify();}}, "t1");t1.start();Thread t2 = new Thread(() -> {synchronized (list) {try {list.wait();} catch (InterruptedException e) {e.printStackTrace();}}log.debug("===============> ");for (int i = 0; i < 30; i++) {Dog d = list.get(i);log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));synchronized (d) {log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}}, "t2");t2.start();}

输出

[t1] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - ===============> 
[t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101

批量撤销

当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的。

  private static void test4() throws InterruptedException {Vector<Dog> list = new Vector<>();int loopNumber = 39;t1 = new Thread(() -> {for (int i = 0; i < loopNumber; i++) {Dog d = new Dog();list.add(d);synchronized (d) {log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}}LockSupport.unpark(t2);}, "t1");t1.start();t2 = new Thread(() -> {LockSupport.park();log.debug("===============> ");for (int i = 0; i < loopNumber; i++) {Dog d = list.get(i);log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));synchronized (d) {log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}LockSupport.unpark(t3);}, "t2");t2.start();t3 = new Thread(() -> {LockSupport.park();log.debug("===============> ");for (int i = 0; i < loopNumber; i++) {Dog d = list.get(i);log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));synchronized (d) {log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));}}, "t3");t3.start();t3.join();log.debug(ClassLayout.parseInstance(new Dog()).toPrintableSimple(true));}

相关文章:

偏向锁撤销

偏向状态 一个对象创建时&#xff1a; 如果开启了偏向锁&#xff08;默认开启&#xff09;&#xff0c;那么对象创建后&#xff0c;markword 值为 0x05 即最后 3 位为 101&#xff0c;这时它的thread、epoch、age 都为 0。偏向锁是默认是延迟的&#xff0c;不会在程序启动时立…...

Qt版海康MV多相机的采集显示程序

创建对话框工程MultiCamera工程文件MultiCamera.pro#------------------------------------------------- # # Project created by QtCreator 2023-03-11T16:52:53 # #-------------------------------------------------QT core guigreaterThan(QT_MAJOR_VERSION, 4): …...

2023年江苏省职业院校技能大赛中职网络安全赛项试卷-教师组任务书

2023年江苏省职业院校技能大赛中职网络安全赛项试卷-教师组任务书 一、竞赛时间 9:00-12:00&#xff0c;12:00-15:00&#xff0c;15:00-17:00共计8小时。 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 第一阶段 基础设施设置与安全加固、网络安全事件响应、数…...

零基础小白如何自学网络安全成为顶尖黑客?

在成为黑客之前&#xff0c;你需要做两点准备&#xff1a; 1、学一门编程语言。学哪一门不重要&#xff0c;但你要参考一下下面的条例&#xff1a; C语言是Unix系统的基础。它&#xff08;连同汇编语言&#xff09;能让你学习对黑客非常重要的知识&#xff1a;内存的工作原理…...

外贸建站如何提高搜索引擎排名,吸引更多潜在客户?

在如今全球贸易日益繁荣的背景下&#xff0c;越来越多的企业开始重视外贸建站&#xff0c;并寻求提高搜索引擎排名以吸引更多潜在客户。 那么&#xff0c;如何才能有效地提高外贸网站的搜索引擎排名呢&#xff1f;本文将为您详细介绍几个有效的方法。 一、关键词优化 关键词…...

计算机网络考研-第一章学

计算机网学习总结第一章计算机系统概述1.1.1 导学1.1.2 操作系统的特征1.2 操作系统的发展与分类1.3 操作系统的运行环境1.3.1 操作系统的运行机制1.3.2 中断和异常1.3.3系统调用&#xff1a;1.3.4 操作系统的体系结构第一章总结第一章计算机系统概述 1.1.1 导学 1.1.2 操作系…...

【分布式版本控制系统Git】| Git概述、Git安装、Git常用命令

目录 一&#xff1a;概述 1.1. 何为版本控制 1.2. 为什么需要版本控制 1.3. 版本控制工具 1.4. Git 简史 1.5. Git 工作机制 1.6. Git和代码托管中心 二&#xff1a;安装 2.1. Git安装 三&#xff1a;常用命令 3.1 设置用户签名 3.2 初始化本地库 3.3 查看本地库…...

【人脸识别】ssd + opencv Eigenfaces 和 LBPH算法进行人脸监测和识别

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录前言ssd opencv Eigenfaces 和 LBPH算法进行人脸监测和识别1. ssd 目标监测2.opencv的三种人脸识别方法2.1 Eigenfaces2.2 LBPH前言 ssd opencv Eigenfaces 和 LB…...

PMP项目管理项目成本管理

目录1 项目成本管理概述2 规划成本管理3 估算成本4 制定预算5 控制成本1 项目成本管理概述 项目成本管理包括为使项目在批准的预算内完成而对成本进行规划、估算、预测、融资、筹资、管理和控制的各个过程&#xff0c;从而确保项目在批准的预算内完工。核心概念 项目成本管理旨…...

Vue3视频播放器组件Vue3-video-play入门教程

Vue3-video-play适用于 Vue3 的 hls.js 播放器组件 | 并且支持MP4/WebM/Ogg格式。 1、支持快捷键操作 2、支持倍速播放设置 3、支持镜像画面设置 4、支持关灯模式设置 5、支持画中画模式播放 6、支持全屏/网页全屏播放 7、支持从固定时间开始播放 8、支持移动端&#xff0c;移动…...

操作系统经典问题——消费者生产者问题

今日在学习操作系统的过程中遇到了这个问题&#xff0c;实在是很苦恼一时间对于这种问题以及老师上课根据这个问题衍生的问题实在是一头雾水。在网络上寻找了一些大佬的讲解之后算是暂时有了点茅塞顿开的感觉。 首先第一点什么是生产者——消费者问题&#xff1a; 系统中有一…...

网络安全工程师在面试安全岗位时,哪些内容是加分项?

金三银四已经来了&#xff0c;很多小伙伴都在困惑&#xff0c;面试网络安全工程师的时候&#xff0c;有哪些技能是加分项呢&#xff1f;接下来&#xff0c;我简单说说&#xff01; 去年我在微博上贴了一些在面试安全工作时会加分的内容&#xff0c;如下&#xff1a; 1. wooyu…...

前端整理 —— vue

1. vue的生命周期 经典爱问&#xff0c;感觉内容挺多的 介绍一下有哪几个 vue2中的生命周期有11个&#xff0c;分别为beforeCreate&#xff0c;created&#xff0c;beforeMount&#xff0c;mounted&#xff0c;beforeUpdate&#xff0c;updated&#xff0c;beforeDestroy&…...

HTML快速入门

目录HTML概念HTML基本格式基本语法常用标签1.文件标签&#xff1a;构成html最基本的标签2.文本标签&#xff1a;和文本有关的标签3.列表标签4.图片标签5.超链接标签6.表格标签7.表单标签HTML概念 HTML是最基础的网页开发语言&#xff0c;Hyper Text Markup Language&#xff0…...

哈希冲突

为什么会有哈希冲突&#xff1f;哈希表通过哈希函数来计算存放数据&#xff0c;在curd数据时不用多次比较&#xff0c;时间复杂度O&#xff08;1&#xff09;。但是凡事都有利弊&#xff0c;不同关键字通过相同哈希函数可能计算出来相同的存放地址&#xff0c;这种现象被称为哈…...

git添加子模块(submodule)

git添加子模块(submodule) 背景 有时候自己的项目需要用到别人的开源代码&#xff0c;例如 freertos 和 tinyusb 这个时候有两种选择 将开源的代码下载下来放到自己的 git 中管理 缺点&#xff1a;如果远端仓库更新&#xff0c;自己仓库的代码不会更新 将开源代码通过子模块…...

C++ 11 pair

class pair 可将两个 value视为一个单元。C标准库内多处用到了这个 class 。尤其是容器 map、multimap、unordered_map和 unordered_multimap就是使用 pair 来管理其以 key/value pair形式存在的元素。任何函数如果需要返回两个 value&#xff0c;也需要用到 pair&#xff0c;例…...

反向传播与随机梯度下降

反向传播实际上就是在算各个阶段梯度&#xff0c;每层的传入实际是之前各层根据链式法则梯度相乘的结果。反向传播最初传入的Δout是1&#xff0c;Δ通常表示很少量的意思&#xff0c;Δout1的时候这样在反向传播的时候算出来的dw和dx刚好就是当前梯度。深度神经网络中每层都会…...

一个conda引起的CPU异常

03/11/2023 登陆访问用户CPU异常 错误描述 早上向往常一样打开机器&#xff0c;突然感觉CPU有点"乱飙"&#xff0c;因为是个人机器&#xff0c;没有别人使用&#xff0c;所以感觉有点问题。 排错流程 首先查看各个进程的资源占用情况 top # 按住P&#xff0c;以CPU的…...

java Date 和 Calendar类 万字详解(通俗易懂)

Date类介绍及使用关于SimpleDateFormat类Calendar类介绍及使用LocalDateTime类介绍及使用关于DateTimeFormatter类一、前言本节内容是我们《API-常用类》专题的第五小节了。本节内容主要讲Date 类 和 Calendar 类&#xff0c;内容包括但不限于Date类简介&#xff0c;Date类使用…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...