当前位置: 首页 > news >正文

CV01_相机成像原理与坐标系之间的转换

目录

0.引言:小孔成像->映射表达式

1. 相机自身的运动如何表征?->外参矩阵E

1.1 旋转

1.2 平移

2. 如何投影到“像平面”?->内参矩阵K

2.1 图像平面坐标转换为像素坐标系      

3. 三维到二维的维度是如何丢失的?->透视变换

4. 坐标变换的应用

附:像平面投影实际的偏差问题

参考资料


0.引言:小孔成像->映射表达式

视觉包含着大量的信息,是几乎所有生物感知环境的主要工具,也是机器人的重要传感器之一,但是相机究竟是如何成像的呢?

现在我们假设一种情况:黑暗的环境下,空中有一个发光的小球,小球对面是铺满了墙壁的一张纸,我们会发现小球照亮了整个纸面,但是小球的二维投影圆却没有呈现在纸上。

现在我们再给一个平面放在小球和纸之间,这个平面中心有一个小孔,光透过小孔,我们发现纸面整体虽然变暗了,但是小球二维投影圆却能清晰看见了。这就是小孔成像。

但是小孔到底起着怎样的作用?从数学角度看,小孔就是一个映射或者函数表达式,它让“物点”与“像点”的空间位置有了一一对应的关系。如果没有“小孔”,那么物点会“漫射”到所有像点,自然不会呈现任何形状。

小孔成像就是相机的基本原理,因为镜头本身和小孔一样,也是一个映射。镜头将物点投射到图像传感器上,将光强信号转换到成电流信号,电流信号再由运算电路转化成数字信号,合成数字图像,就是照片。

下面我们就来具体求解这个镜头代表的映射函数的具体形式,从而构建物和像之间的数学关系。

1. 相机自身的运动如何表征?->外参矩阵E

首先,我们建立一个世界坐标系W,而我们的相机自身也有一个坐标系,我们称为相机坐标系C,而且相机坐标系C可以在世界坐标系W中运动,这就引出几个问题:

1.相机自身的运动如何表征?

2.世界坐标系中的“物点”投影到相机的成像平面,这又如何表示?

3.三维到二维的维度是如何丢失的?

4.这些坐标的变换有什么应用?

问题一个一个解决。我们先看第一个问题,为了明白背后的原理我先采用二维坐标(三维坐标是同理的),这样便于理解。

从世界坐标系变换到相机坐标系属于刚体变换。首先介绍刚体运动的概念:刚体(即形状和大小不变的理想化物体)进行的运动,这种运动保持了物体内部所有点之间的相对距离不变。刚体变换通常包括“平移”和”旋转“。

(注意说明旋转和平移时用的是二维举例,三维坐标系的原理是相同的,推广即可)

1.1 旋转

我们先看旋转。现在在二维空间(三维空间同理)有一点P,其W坐标系下(x,y),红色的相机坐标系原来与世界坐标系重合,现在其旋转了θ角:

那么,P点在做了旋转运动了的相机坐标系C下的坐标(x',y')是多少呢?

这个问题我们回头解决,我们先看一下二维平面内的旋转运动是如何表达的:

二维空间内一点P的坐标为(x,y),其绕原点旋转θ后得到P’的坐标是(x',y'),如何求x',y'?

假设OP连线与X轴夹角为 α,由于旋转不改变OP长度,所以有这个等式

\frac x{\cos\alpha}=\frac{x^{\prime}}{\cos{(\alpha+\theta)}}                     

利用和角公式展开可得到x',相似,我们也能得到y'

y'=x\sin\theta+y\cos\theta

我们利用线性代数的知识写成矩阵的形式,这就得到一个旋转矩阵R,也是一个二维的线性变换

\begin{bmatrix}x'\\y'\end{bmatrix}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}

我们记作p'=Rp,R为上面的旋转矩阵。


我们回到刚才的问题,用同样的思路,还是有OP长度相等的关系,我们计算可得x'y'x^{\prime}=x\cos\theta+y\sin\theta\\y^{\prime}=-x\sin\theta+y\cos\theta

还是用矩阵来表达,我们就得到了一个坐标基变换的表达式

\begin{bmatrix}x'\\y'\end{bmatrix}=\begin{bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}

上面的矩阵我们记作A,写作p'=Ap(其实这就是坐标基变换

矩阵A的作用就是对同一点不同坐标系下的表达式进行转化

如果我们把刚刚得到的R和A相乘,结果会发现是一个单位矩阵I,则A和R就是互逆的。换句话说:再量相同的情况下,旋转点和坐标系变换是互逆的操作。

\begin{aligned}\mathbf{AR}&=\begin{bmatrix}1&0\\0&1\end{bmatrix}=\mathbf{I}\\\mathbf{A}&=\mathbf{R}^{-1}\end{aligned}

这一点非常有用,也就是只要我们知道了相机的运动,就可以求表示相机运动的逆矩阵来求空间物点在运动后的相机坐标系下的表达

1.2 平移

上面的是旋转运动,下面我们看一下平移运动。

点P移动到P',(x',y')的坐标很容易得到。但是我们要注意,平移不是线性变换,也就是说我们不能用矩阵表示平移运动。但是如果我们硬要用矩阵来表示平移呢?----这就引出了齐次坐标(homogeneous)

我们可以用如下方式表示点P的平移

\begin{bmatrix}x'\\y'\\1\end{bmatrix}=\begin{bmatrix}1&0&a\\0&1&b\\0&0&1\end{bmatrix}\begin{bmatrix}x\\y\\1\end{bmatrix}

上面的矩阵其实就是三维剪切变换,带入到三维中通过线性变换来达到“平移”的效果

那条白色的线其实都发生了成比例的缩放,缩放因子就是最后一个维度的值ω,ω=1时称为归一化平面,齐次坐标ω不同的点在笛卡尔坐标系下是同一个点。

这就是所谓的透视投影(中心投影变换)。透视中心就在ω=0的所谓无穷远点处。

这样我们就明白,我们可以通过高维的剪切变换来实现低维度的平移变换,从而解决了平移运动的矩阵表示问题。

我们通常把线性变换+ 平移称为“仿射变换”(Affine) 

同样地,对于相机坐标系的平移,我们可以通过直接求平移矩阵T的逆矩阵来得到基变换矩阵A。

\begin{aligned} &\mathbf{p}^{\prime}=\mathbf{Tp} \\ &\mathbf{p}^{\prime}=\mathbf{Ap}=\mathbf{T}^{-1}\mathbf{p} \\ &\mathbf{T}=\begin{bmatrix}1&0&a\\0&1&b\\0&0&1\end{bmatrix}\quad\mathbf{A}=\begin{bmatrix}1&0&-a\\0&1&-b\\0&0&1\end{bmatrix} \end{aligned}

然后我们把刚刚提到的平移和旋转合在一起,拼成一个矩阵,就得到了能够转换二维(三维同理)世界坐标到运动的相机坐标系的桥梁(线性变换)。

\left[\begin{array}{ccc}\cos\theta&\sin\theta&a\\-\sin\theta&\cos\theta&b\\0&0&1\end{array}\right]

我们把这个矩阵写成更一般的形式,T和R分别表示平移和旋转,我们称E为相机的“外参矩阵”(Extrinsic Matrix)

E=\begin{bmatrix}R&T\\0^T&1\end{bmatrix},\mathbf{p}'=E\mathbf{p}

写成这种形式的好处是,可以统一的表达有限维空间的情况,比如二维和三维

(注:基于欧拉角的旋转矩阵,其具体形式与旋转轴是否固定以及旋转顺序有关)

如此一来,我们就把第一个问题解决了。

2. 如何投影到“像平面”?->内参矩阵K

我们已经把世界坐标系通过外参矩阵E转换到了运动了的相机坐标系下了,现在我们把目光聚焦到相机坐标系就可以了。像平面与XY平面的距离我们称为焦距f,相机坐标系下一点P(x,y,z)与坐标原点所连直线与像平面的交点P'就是:P在像平面上或者说焦平面上的投影点。

现在我们来求P' 的坐标,根据两个三角形相似,可得

\frac{x'}x=\frac fz\\\frac{y'}y=\frac fz  则P'的坐标为p'(xf/z,yf/z,f)

我们再定义像平面上的坐标为(xf/z,yf/z)这就是图像坐标系下的坐标值。

写成齐次坐标下矩阵的形式为

z\begin{bmatrix}x'\\y'\\1\end{bmatrix}=\begin{bmatrix}f&0&0&0\\0&f&0&0\\0&0&1&0\end{bmatrix}\begin{bmatrix}x\\y\\z\\1\end{bmatrix}, z代表点p的深度信息。


 


2.1 图像平面坐标转换为像素坐标系      

像素坐标系和图像坐标系都在成像平面上只是各自的原点和度量单位不一样。图像坐标系的原点为相机光轴与成像平面的交点,通常情况下是成像平面的中点或者叫principal point。图像坐标系的单位是mm,是物理单位,而像素坐标系的单位是pixel,我们平常描述一个像素点都是几行几列。所以这两者之间的转换关系如下:

\begin{array}{l}u=\frac{xf/z}{dx}+u_0\\\nu=\frac{yf/z}{dy}+\nu_0\end{array}

其中,dx和dy分别表示每一列和每一行分别代表多少mm,即1pixel=dxmm。以齐次坐标形式表示为:
 \begin{bmatrix}u\\\\\nu\\1\end{bmatrix}=\begin{bmatrix}\frac{1}{dx}&0&u_0\\\\0&\frac{1}{dy}&\nu_0\\\\0&0&1\end{bmatrix}\begin{bmatrix}{xf/z}\\{yf/z}\\1\end{bmatrix}

那么将上面得线性变换矩阵与之前的作矩阵乘法,有

\begin{bmatrix}\frac{1}{dx}&0&u_0\\0&\frac{1}{dy}&\nu_0\\0&0&1\end{bmatrix}\begin{bmatrix}f&0&0&0\\0&f&0&0\\0&0&1&0\end{bmatrix}=\begin{bmatrix}f_x&0&u_0&0\\0&f_y&\nu_0&0\\0&0&1&0\end{bmatrix} ,其中fx,fy是焦距(mm)像素值表示(pixel)

右侧的矩阵即为相机的内参矩阵,我们记作K。我们可以看到,这个矩阵其实也是一个仿射变换的形式。

这样,我们的第二个问题也解决了。

3. 三维到二维的维度是如何丢失的?->透视变换

我们把内外参矩阵写在一起,就得到了之前“小孔成像”所代表的映射的表达式P^{\prime}=KEP

这里本质上是一个透视变换,即齐次坐标转笛卡尔坐标(降维了),相机成像三维到二维的维度丢失,就是在这里发生的,得到的归一化像素坐标系下的uv值就是我们要找的图像坐标了。

一句话总结第三个问题的答案:相机坐标系到归一化像素坐标系的透视变换(投影)

4. 坐标变换的应用

1.相机标定:

每一个相机生产出来之后都要进行标定,这样才能把相机的内参写进产品手册卖给客户,而外参会随着相机运动变化而变化,一般把相机固定之后再校正。常用的标定方法是张正友老师提出的棋盘格校定法,此外还有直接线性法DLT。但无论哪种方法,本质都是求解内外参矩阵E和K

2.视觉测量:
iphone的measure也是通过内外参矩阵,才能把图像像素的距离和真实的物理距离对应起来。

3.视觉导航:

如果我们用摄像头作为传感器进行导航和定位,尤其是在视觉SLAM中,如果我们不知道相机的内外参矩阵,又怎么能通过摄像头提供的图像信息解算真实世界的位置,构建真实世界的物理地图呢?

附:像平面投影实际的偏差问题

在实际情况下,相机的成像并没有那么理想。

首先,由于图像传感器的尺寸和形状误差,导致像平面沿xy轴有不同尺度的缩放(scale):

\begin{aligned}(u,v)=(\alpha xf/z,\beta yf/z)\end{aligned}

再者,相机在实际生产过程中存在公差和不确定性因素,导致Z轴或者说主光轴未穿过像平面的中心而产生偏移(offset):
\begin{aligned}(u,v)=(\alpha xf/z+x_0,\beta yf/z+y_0)\end{aligned}

最后,由于工艺问题,像平面不再是矩形而是平行四边形,我们用θ来刻画这种偏斜(skew)。我们会发现这本质也是一个坐标基变换的问题,从垂直XY轴,变成了非垂直的xy轴,从正交基变为了非正交基。

x'=x-y\cot\theta\quad y'=y/\sin\theta

(u,v)=(\alpha(x-y\cot\theta)f/z+x_0,\beta(y/\sin\theta)f/z+y_0)

参考资料

参考1

参考2

参考3

相关文章:

CV01_相机成像原理与坐标系之间的转换

目录 0.引言:小孔成像->映射表达式 1. 相机自身的运动如何表征?->外参矩阵E 1.1 旋转 1.2 平移 2. 如何投影到“像平面”?->内参矩阵K 2.1 图像平面坐标转换为像素坐标系 3. 三维到二维的维度是如何丢失的?…...

Android Lint

文章目录 Android Lint概述工作流程Lint 问题问题种类警告严重性检查规则 用命令运行 LintAndroidStudio 使用 Lint忽略 Lint 警告gradle 配置 Lint查找无用资源文件 Android Lint 概述 Lint 是 Android 提供的 代码扫描分析工具,它可以帮助我们发现代码结构/质量…...

【算法刷题 | 动态规划14】6.28(最大子数组和、判断子序列、不同的子序列)

文章目录 35.最大子数组和35.1题目35.2解法:动规35.2.1动规思路35.2.2代码实现 36.判断子序列36.1题目36.2解法:动规36.2.1动规思路36.2.2代码实现 37.不同的子序列37.1题目37.2解法:动规37.2.1动规思路37.2.2代码实现 35.最大子数组和 35.1…...

vue3 vxe-grid列中绑定vxe-switch实现数据更新

1、先上一张图&#xff1a; <template #valueSlot"{ row }"><vxe-switch :value"getV(row.svalue)" change"changeSwitch(row)" /></template>function getV(value){return value 1;};function changeSwitch(row) {console.l…...

Hive SQL:实现炸列(列转行)以及逆操作(行转列)

目录 列转行行转列 列转行 函数&#xff1a; EXPLODE(ARRAY)&#xff1a;将ARRAY中的每一元素转换为每一行 EXPLODE(MAP)&#xff1a;将MAP中的每个键值对转换为两行&#xff0c;其中一行数据包含键&#xff0c;另一行数据包含值 数据样例&#xff1a; 1、将每天的课程&#…...

MD5算法详解

哈希函数 是一种将任意输入长度转变为固定输出长度的函数。 一些常见哈希函数有&#xff1a;MD5、SHA1、SHA256。 MD5算法 MD5算法是一种消息摘要算法&#xff0c;用于消息认证。 数据存储方式&#xff1a;小段存储。 数据填充 首先对我们明文数据进行处理&#xff0c;使其…...

ES6的代理模式-Proxy

语法 target 要使用 Proxy 包装的目标对象&#xff08;可以是任何类型的对象&#xff0c;包括原生数组&#xff0c;函数&#xff0c;甚至另一个代理handler 一个通常以函数作为属性的对象&#xff0c;用来定制拦截行为 const proxy new Proxy(target, handle)举个例子 <s…...

排序(堆排序、快速排序、归并排序)-->深度剖析(二)

前言 前面介绍了冒泡排序、选择排序、插入排序、希尔排序&#xff0c;作为排序中经常用到了算法&#xff0c;还有堆排序、快速排序、归并排序 堆排序&#xff08;HeaSort&#xff09; 堆排序的概念 堆排序是一种有效的排序算法&#xff0c;它利用了完全二叉树的特性。在C语言…...

七一建党节|热烈庆祝中国共产党成立103周年!

时光荏苒&#xff0c;岁月如梭。 在这热情似火的夏日&#xff0c; 我们迎来了中国共产党成立103周年的重要时刻。 这是一个值得全体中华儿女共同铭记和庆祝的日子&#xff0c; 也是激励我们不断前进的重要时刻。 103年&#xff0c; 风雨兼程&#xff0c;砥砺前行。 从嘉兴…...

Spring Boot应用知识梳理

一.简介 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的工具。它简化了基于 Spring 的应用程序的配置和部署过程&#xff0c;提供了一种快速、便捷的方式来构建独立的、生产级别的 Spring 应用程序。 Spring Boot 的一些主要优点包括&#xff1a; 1. 简化配置…...

Spring中利用重载与静态分派

Spring中利用重载与静态分派 在Java和Spring框架中&#xff0c;重载&#xff08;Overloading&#xff09;和静态分派&#xff08;Static Dispatch&#xff09;是两个非常重要的概念&#xff0c;它们在处理类方法选择和执行过程中扮演着关键角色。本文旨在深入探讨Spring环境下…...

文本三剑客之awk:

文本三剑客awk&#xff1a; grep 查 sed 增删改查 主要&#xff1a;增改 awk 按行取列 awk awk默认的分隔符&#xff1a;空格&#xff0c;tab键&#xff0c;多个空格自动压缩为一个。 awk的工作原理&#xff1a;根据指令信息&#xff0c;逐行的读取文本内容&#xff0c;然…...

SpringSecurity-授权示例

用户基于权限进行授权 定义用户与权限 authorities()。 package com.cms.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.security.core.userdetails.User; import…...

选哪个短剧系统源码好:全面评估与决策指南

在短剧内容创作和分享日益流行的今天&#xff0c;选择合适的短剧系统源码对于构建一个成功的短剧平台至关重要。短剧系统源码不仅关系到平台的稳定性和用户体验&#xff0c;还直接影响到内容创作者和观众的互动质量。本文将提供一份全面的评估指南&#xff0c;帮助您在众多短剧…...

AI时代的软件工程:挑战与改变

人工智能&#xff08;AI&#xff09;正以惊人的速度改变着我们的生活和工作方式。作为与AI关系最为密切的领域之一&#xff0c;软件工程正经历着深刻的转变。 1 软件工程的演变 软件工程的起源 软件工程&#xff08;Software Engineering&#xff09;是关于如何系统化、规范化地…...

Zuul介绍

Zuul 是 Netflix 开源的一个云平台网络层代理&#xff0c;它主要用于路由、负载均衡、中间件通信和动态路由。Zuul 本质上是一个基于 JVM 的网关&#xff0c;它提供了以下功能&#xff1a; 1.路由&#xff1a;Zuul 允许客户端和服务器之间的所有入站和出站请求通过一个中心化的…...

7-1作业

1.实验目的&#xff1a;完成字符收发 led.h #ifndef __GPIO_H__ #define __GPIO_H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h"//RCC,GPIO,UART初始化 void init();//字符数据发送 void set_tt…...

ElasticSearch安装、配置详细步骤

一、环境及版本介绍 操作系统&#xff1a; Windows 10 软件版本&#xff1a; elasticsearch-7.17.22、kibana-7.17.22、IK-7.17.22 开发环境选择软件版本应提前考虑正式系统环境&#xff0c;否则会产生软件与服务器环境不兼容的问题出现&#xff0c;ElasticSearch与环境支持…...

【Mybatis 与 Spring】事务相关汇总

之前分享的几篇文章可以一起看&#xff0c;形成一个体系 【Mybatis】一级缓存与二级缓存源码分析与自定义二级缓存 【Spring】Spring事务相关源码分析 【Mybatis】Mybatis数据源与事务源码分析 Spring与Mybaitis融合 SpringManagedTransaction&#xff1a; org.mybatis.spri…...

Leetcode 2065. 最大化一张图中的路径价值(DFS / 最短路)

Leetcode 2065. 最大化一张图中的路径价值 暴力DFS 容易想到&#xff0c;从0点出发DFS&#xff0c;期间维护已经走过的距离&#xff08;时间&#xff09;和途径点的权值之和&#xff0c;若访问到0点则更新答案&#xff0c;若下一步的距离与已走过的距离和超出了maxTime&#…...

SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

CVPR2024 香港理工大学&OPPO&bytedancehttps://github.com/cswry/SeeSR?tabreadme-ov-file#-licensehttps://arxiv.org/pdf/2311.16518#page5.80 问题引入 因为有些LR退化情况比较严重&#xff0c;所以超分之后的结果会出现语义的不一致的情况&#xff0c;所以本文训…...

七月论文审稿GPT第5版:拿我司七月的早期paper-7方面review数据集微调LLama 3

前言 llama 3出来后&#xff0c;为了通过paper-review的数据集微调3&#xff0c;有以下各种方式 不用任何框架 工具 技术&#xff0c;直接微调原生的llama 3&#xff0c;毕竟也有8k长度了 效果不期望有多高&#xff0c;纯作为baseline通过PI&#xff0c;把llama 3的8K长度扩展…...

盘古5.0,靠什么去解最难的题?

文&#xff5c;周效敬 编&#xff5c;王一粟 当大模型的竞争开始拼落地&#xff0c;商业化在B端和C端都展开了自由生长。 在B端&#xff0c;借助云计算向千行万业扎根&#xff1b;在C端&#xff0c;通过软件App和智能终端快速迭代。 在华为&#xff0c;这家曾经以通信行业起…...

2.3章节Python中的数值类型

1.整型数值 2.浮点型数值 3.复数   Python中的数值类型清晰且丰富&#xff0c;主要分为以下几种类型&#xff0c;每种类型都有其特定的用途和特性。 一、整型数值 1.定义&#xff1a;整数类型用于表示整数值&#xff0c;如1、-5、100等。 2.特点&#xff1a; Python 3中的…...

每日Attention学习7——Frequency-Perception Module

模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息&#xff0c;更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...

【从0实现React18】 (五) 初探react mount流程 完成核心递归流程

更新流程的目的&#xff1a; 生成wip fiberNode树标记副作用flags 更新流程的步骤&#xff1a; 递&#xff1a;beginWork归&#xff1a;completeWork 在 上一节 &#xff0c;我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中&#xff…...

0-30 VDC 稳压电源,电流控制 0.002-3 A

怎么运行的 首先&#xff0c;有一个次级绕组额定值为 24 V/3 A 的降压电源变压器&#xff0c;连接在电路输入点的引脚 1 和 2 上。&#xff08;电源输出的质量将直接影响与变压器的质量成正比&#xff09;。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...

HTML5+CSS3+JS小实例:图片九宫格

实例:图片九宫格 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1…...

湘潭大学软件工程数据库总结

文章目录 前言试卷结构给学弟学妹的一些参考自己的一些总结 前言 自己可能很早很早之前就准备复习了&#xff0c;但是感觉还是没有学到要点&#xff0c;主要还是没啥紧迫的压力&#xff0c;我们是三月份开学&#xff0c;那时候实验室有朋友挺认真开始学习数据库了&#xff0c;…...

Codeforces Testing Round 1 B. Right Triangles 题解 组合数学

Right Triangles 题目描述 You are given a n m nm nm field consisting only of periods (‘.’) and asterisks (‘*’). Your task is to count all right triangles with two sides parallel to the square sides, whose vertices are in the centers of ‘*’-cells. …...

怎样将word默认Microsoft Office,而不是WPS

设置——>应用——>默认应用——>选择"word"——>将doc和docx都选择Microsoft Word即可...

C语言之进程的学习2

Env环境变量&#xff08;操作系统的全局变量&#xff09;...

web使用cordova打包Andriod

一.安装Gradel 1.下载地址 Gradle Distributions 2.配置环境 3.测试是否安装成功 在cmd gradle -v 二.创建vite项目 npm init vitelatest npm install vite build 三.创建cordova项目 1.全局安装cordova npm install -g cordova 2. 创建项目 cordova create cordova-app c…...

内卷情况下,工程师也应该了解的项目管理

简介&#xff1a;大家好&#xff0c;我是程序员枫哥&#xff0c;&#x1f31f;一线互联网的IT民工、&#x1f4dd;资深面试官、&#x1f339;Java跳槽网创始人。拥有多年一线研发经验&#xff0c;曾就职过科大讯飞、美团网、平安等公司。在上海有自己小伙伴组建的副业团队&…...

【解锁未来:深入了解机器学习的核心技术与实际应用】

解锁未来&#xff1a;深入了解机器学习的核心技术与实际应用 &#x1f48e;1.引言&#x1f48e;1.1 什么是机器学习&#xff1f; &#x1f48e;2 机器学习的分类&#x1f48e;3 常用的机器学习算法&#x1f48e;3.1 线性回归&#xff08;Linear Regression&#xff09;&#x1…...

1-3.文本数据建模流程范例

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名–章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…...

【FFmpeg】avformat_alloc_output_context2函数

【FFmpeg】avformat_alloc_output_context2函数 1.avformat_alloc_output_context21.1 初始化AVFormatContext&#xff08;avformat_alloc_context&#xff09;1.2 格式猜测&#xff08;av_guess_format&#xff09;1.2.1 遍历可用的fmt&#xff08;av_muxer_iterate&#xff0…...

Flask 缓存和信号

Flask-Caching Flask-Caching 是 Flask 的一个扩展&#xff0c;它为 Flask 应用提供了缓存支持。缓存是一种优化技术&#xff0c;可以存储那些费时且不经常改变的运算结果&#xff0c;从而加快应用的响应速度。 一、初始化配置 安装 Flask-Caching 扩展&#xff1a; pip3 i…...

基于weixin小程序农场驿站系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;农场资讯管理&#xff0c;用户管理&#xff0c;卖家管理&#xff0c;用户分享管理&#xff0c;分享类型管理&#xff0c;商品信息管理&#xff0c;商品类型管理 开发系统&#xff1a;Windows 架构模式…...

JAVA将List转成Tree树形结构数据和深度优先遍历

引言&#xff1a; 在日常开发中&#xff0c;我们经常会遇到需要将数据库中返回的数据转成树形结构的数据返回&#xff0c;或者需要对转为树结构后的数据绑定层级关系再返回&#xff0c;比如需要统计当前节点下有多少个节点等&#xff0c;因此我们需要封装一个ListToTree的工具类…...

设计模式——开闭、单一职责及里氏替换原则

设计原则是指导软件设计和开发的一系列原则&#xff0c;它们帮助开发者创建出易于维护、扩展和理解的代码。以下是你提到的几个关键设计原则的简要说明&#xff1a; 开闭原则&#xff08;Open/Closed Principle, OCP&#xff09;&#xff1a; 开闭原则由Bertrand Meyer提出&am…...

代码随想录算法训练营第59天:动态[1]

代码随想录算法训练营第59天&#xff1a;动态 两个字符串的删除操作 力扣题目链接(opens new window) 给定两个单词 word1 和 word2&#xff0c;找到使得 word1 和 word2 相同所需的最小步数&#xff0c;每步可以删除任意一个字符串中的一个字符。 示例&#xff1a; 输入: …...

jvm性能监控常用工具

在java的/bin目录下有许多java自带的工具。 我们常用的有 基础工具 jar:创建和管理jar文件 java&#xff1a;java运行工具&#xff0c;用于运行class文件或jar文件 javac&#xff1a;java的编译器 javadoc&#xff1a;java的API文档生成工具 性能监控和故障处理 jps jstat…...

ISP IC/FPGA设计-第一部分-SC130GS摄像头分析-IIC通信(1)

1.摄像头模组 SC130GS通过一个引脚&#xff08;SPI_I2C_MODE&#xff09;选择使用IIC或SPI配置接口&#xff0c;通过查看摄像头模组的原理图&#xff0c;可知是使用IIC接口&#xff1b; 通过手册可知IIC设备地址通过一个引脚控制&#xff0c;查看摄像头模组的原理图&#xff…...

HTTP协议头中X-Forwarded-For是能做什么?

X-Forwarded-For和相关几个头部的理解 $remote_addr 是nginx与客户端进行TCP连接过程中&#xff0c;获得的客户端真实地址. Remote Address 无法伪造&#xff0c;因为建立 TCP 连接需要三次握手&#xff0c;如果伪造了源 IP&#xff0c;无法建立 TCP 连接&#xff0c;更不会有后…...

Linux高并发服务器开发(八)Socket和TCP

文章目录 1 IPV4套接字结构体2 TCP客户端函数 3 TCP服务器流程函数代码粘包 4 三次握手5 四次挥手6 滑动窗口 1 IPV4套接字结构体 2 TCP客户端 特点&#xff1a;出错重传 每次发送数据对方都会回ACK&#xff0c;可靠 tcp是打电话的模型&#xff0c;建立连接 使用连接 关闭连接…...

力扣第220题“存在重复元素 III”

在本篇文章中&#xff0c;我们将详细解读力扣第220题“存在重复元素 III”。通过学习本篇文章&#xff0c;读者将掌握如何使用桶排序和滑动窗口来解决这一问题&#xff0c;并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释&#xff0c;以便于理解。 问题描述…...

Qt实战项目——贪吃蛇

一、项目介绍 本项目是一个使用Qt框架开发的经典贪吃蛇游戏&#xff0c;旨在通过简单易懂的游戏机制和精美的用户界面&#xff0c;为玩家提供娱乐和编程学习的机会。 游戏展示 二、主要功能 2.1 游戏界面 游戏主要是由三个界面构成&#xff0c;分别是游戏大厅、难度选择和游戏…...

Windows 10,11 Server 2022 Install Docker-Desktop

docker 前言 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 docker-compose Compose 是用于定义和运行…...

C++中的RAII(资源获取即初始化)原则

C中的RAII&#xff08;Resource Acquisition Is Initialization&#xff0c;资源获取即初始化&#xff09;原则是一种管理资源、避免资源泄漏的惯用法。RAII是C之父Bjarne Stroustrup提出的设计理念&#xff0c;其核心思想是将资源的获取&#xff08;如动态内存分配、文件句柄、…...

目标检测系列(二)yolov1的全面讲解

目录 1、网络结构 2、检测原理 3、制作训练正样本方法 4、损失函数 5、前向推理 6、模型缺限 YOLO的全称是you only look once&#xff0c;指只需要浏览一次就可以识别出图中的物体的类别和位置。YOLO被称为Region-free方法&#xff0c;相比于Region-based方法&#xff0…...

312. 戳气球

312. 戳气球 题目链接&#xff1a;312. 戳气球 代码如下&#xff1a; //参考链接:https://leetcode.cn/problems/burst-balloons/solutions/336390/chuo-qi-qiu-by-leetcode-solution class Solution { public:int maxCoins(vector<int>& nums) {int nnums.size()…...

C++:枚举类的使用案例及场景

一、使用案例 在C中&#xff0c;枚举类&#xff08;也称为枚举类型或enum class&#xff09;是C11及以后版本中引入的一种更加强大的枚举类型。与传统的枚举&#xff08;enum&#xff09;相比&#xff0c;枚举类提供了更好的类型安全性和作用域控制。下面是一个使用枚举类的案…...

JAVA连接FastGPT实现流式请求SSE效果

FastGPT 是一个基于 LLM 大语言模型的知识库问答系统&#xff0c;提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排&#xff0c;从而实现复杂的问答场景&#xff01; 一、先看效果 真正实流式请求&#xff0c;SSE效果&#xff0c;SSE解释&am…...

Echarts-柱状图

1.案例1 1.1代码 option = {textStyle: {color: #fff // 标题文字颜色为白色},tooltip: {trigger: axis,axisPointer: {type: shadow,},},legend: {textStyle: {color: white}},grid: {top: 15%,left: 4%,right: 4%,bottom: 7%,containLabel: true},xAxis:{type: category,da…...

AI图生视频工具测试

环境&#xff1a; 即梦 pika LUMA 可灵 问题描述&#xff1a; AI图生视频工具测试下面是原图 解决方案&#xff1a; 1.即梦 效果 2.pika 生成效果 3.LUMA 生成效果还行 4.可灵 生成效果最好...

上市后跌幅达70%,格灵深瞳风投股东继续减持

被明星资本助推上市的格灵深瞳,如今也被资本集体抛下。初创时实控人构建的视觉AI故事迅速迎起资本注意,真格基金、策源创投以及红杉资本等机构早早入局。然而成立十一年,格灵深瞳仍在亏损的泥潭里迟迟挣扎,IPO限售期满,机构争先恐后减持退出。6月18日,红杉资本减持股份超…...

城市通勤神器!奔腾小马2.89万元火爆预售

上下班高峰期的通勤,总是让人头疼。坐公交人挤人,路上的耗时更是无法计算;乘地铁相对省时间,但车厢里依然像是“沙丁鱼罐头”。如果遇到刮风下雨等恶劣天气,就更加令人恼火。在这种情况下,很多人都希望能拥有一辆价格便宜、配置够用的代步小车,虽无奢华体验,但求遮风挡…...

2024 年 5 个 GO REST API 框架

什么是API&#xff1f; API是一个软件解决方案&#xff0c;作为中介&#xff0c;使两个应用程序能够相互交互。以下一些特征让API变得更加有用和有价值&#xff1a; 遵守REST和HTTP等易于访问、广泛理解和开发人员友好的标准。API不仅仅是几行代码&#xff1b;这些是为移动开…...

深入分析 Android Activity (三)

文章目录 深入分析 Android Activity (三)1. Activity 的配置变化处理1.1 处理配置变化 2. Activity 的存储和恢复状态2.1 保存状态2.2 恢复状态 3. Activity 与 Fragment 的通信3.1 通过接口进行通信3.2 通过 ViewModel 进行通信 4. Activity 的窗口管理和视图层次结构4.1 Dec…...

222.完全二叉树的节点个数

给出一个完全二叉树&#xff0c;求出该树的节点个数。 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,4,5,6]输出&#xff1a;6 示例 2&#xff1a; 输入&#xff1a;root []输出&#xff1a;0 示例 3&#xff1a; 输入&#xff1a;root [1]输出&#xff1a;1 提示…...

Android ANR简介

ANR&#xff08;App not respond&#xff09;是Android定义的一种稳定性问题类型&#xff1b;系统发出关键消息&#xff0c;同时发出此消息的超时消息。处理逻辑有两种情况&#xff1a; 关键消息被执行&#xff0c;超时消息被清除&#xff1b;ANR不会发生超时消息被执行&#x…...