当前位置: 首页 > news >正文

排序(堆排序、快速排序、归并排序)-->深度剖析(二)

前言

前面介绍了冒泡排序、选择排序、插入排序、希尔排序,作为排序中经常用到了算法,还有堆排序快速排序归并排序

堆排序(HeaSort)

堆排序的概念

堆排序是一种有效的排序算法,它利用了完全二叉树的特性。在C语言中,堆排序通常通过构建一个最大堆(或最小堆),然后逐步调整堆结构,最终实现排序。

代码实现

堆排序是一种基于二叉堆的排序算法,它通过将待排序的元素构建成一个二叉堆,然后逐步移除堆顶元素并将其放置在数组的尾部,同时维护堆的性质,直至所有元素都被排序。

注意:第一个for循环中的(n-1-1)/ 2 的含义

  • 第一个减1是由n-1个元素
  • 第二个减1是除以2是父亲节点。以为我们调整的是每一个根节点。(非叶子节点)
//堆排序
void HeapSort(int* a, int n)
{//建堆for(int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a,n,i);}//排序int end = n - 1;while(end > 0){Swap(&a[end], &a[0]);AdjustDown(a, end, 0);--end;}	
}

其中AdjustDown是建立堆的函数,我们要建立一个大堆,将替换到上上面的小值,向下调整,保持大堆的结构。

代码如下:

//向下调整
void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child]){child++;}if (a[parent] < a[child]){Swap(&a[parent], &a[child]);parent = child;child = parent * 2 + 1;}else{break;}}}

堆排序的复杂度分析

堆排序是一种常用的排序算法,其时间复杂度通常为O(nlogn)。在C语言中实现堆排序时,时间复杂度的分析主要涉及到两个阶段:构建初始堆和进行堆排序。

  • 构建初始堆:从最后一个非叶子节点开始,逐步向上调整,直到根节点满足堆的性质。这个过程的时间复杂度为O(n),因为需要对每个非叶子节点进行一次调整。
  • 进行堆排序:堆排序的过程涉及到多次交换堆顶元素和最后一个元素,并对剩余的元素进行调整。每次交换后,堆的大小减一,并对新的堆顶元素进行调整。这个过程的时间复杂度为O(nlogn),因为每次调整的时间复杂度为O(logn),总共需要进行n-1次调整。

快速排序(Quick Sort)

快速排序的概念

快速排序(Quick Sort)是一种高效的排序算法,它的基本思想是通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后再分别对这两部分记录继续进行排序,以达到整个序列有序的目的。在C语言中,快速排序的实现通常涉及到递归函数的编写,以及对数组进行分区(partition)操作。

霍尔版本(hoare)

在这里插入图片描述

在这里我们是要,定义一个关键字(keyi)进行分区,然后分别向左右进行递归。

代码实现

int part1(int* a, int left, int right)
{int mid = GetmidNum(a,left,right);Swap(&a[left], &a[mid]);int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi])right--;while (left < right && a[left] <=a[keyi])left++;Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);keyi = left;return keyi;
}

挖坑法

挖坑法类似于霍尔方法,挖坑就是记住关键字,保证关键字就是一个坑位,比关键字值小(大)的时候就入坑位,此时,这个值位置作为新的坑位直至两个前后指针指向同一个坑位。

在这里插入图片描述

代码实现

int part2(int* a, int left, int right)
{int mid = GetmidNum(a, left, right);Swap(&a[left], &a[mid]);int keyi = a[left];int hole = left;while (left < right){while (left < right && a[right] >= keyi)right--;Swap(&a[hole], &a[right]);hole = right;while (left < right && a[left] <= keyi)left++;Swap(&a[hole], &a[left]);hole = left;}Swap(&keyi, &a[hole]);keyi = left;return keyi; }

前后指针法

  • prev 指针初始化为数组的开始位置,cur 指针初始化为 prev 的下一位置。

  • cur 指针向前遍历数组,寻找小于或等于基准值的元素,而 prev 指针则跟随 cur 指针的移动,直到 cur 找到一个小于基准值的元素。

  • 一旦找到这样的元素,prevcur 指针之间的元素都会被交换,然后 cur 指针继续向前移动,直到找到下一个小于基准值的元素,或者到达数组的末尾。最后,基准值会被放置在 prev 指针当前的位置,完成一次排序

在这里插入图片描述

代码实现

int part3(int* a, int left, int right)
{int mid = GetmidNum(a, left, right);Swap(&a[left], &a[mid]);int keyi = left;int cur = left + 1;int prev = left;while (cur <= right){while (a[cur] < a[keyi] && ++prev != cur)Swap(&a[cur], &a[prev]);++cur;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}

递归实现

以上都是递归方法,通过调用分区进行排序。

void QuickSort(int* a, int left, int right)
{if (left >= right)return;int key = part3(a, left, right);QuickSort(a, left, key - 1);QuickSort(a, key + 1, right);}

快速排序迭代实现(利用栈)参考:栈和队列

基本步骤
  1. 初始化栈:创建一个空栈,用于存储待排序子数组的起始和结束索引。
  2. 压栈:将整个数组的起始和结束索引作为一对入栈。
  3. 循环处理,在栈非空时,重复以下步骤:
    • 弹出一对索引(即栈顶元素)来指定当前要处理的子数组。
    • 选择子数组的一个元素作为枢轴(pivot)进行分区。
    • 进行分区操作,这会将子数组划分为比枢轴小的左侧部分和比枢轴大的

代码实现

void QuickSortNonR(int* a, int left, int right)
{ST st;STInit(&st);STpush(&st, left);STpush(&st, right);while (!STEmpty(&st)){int end = STTop(&st);STPop(&st);int begin = STTop(&st);STPop(&st);int keyi = part3(a, begin, end);if (keyi + 1 < end){STpush(&st, keyi + 1);STpush(&st, end);}if (begin < keyi - 1){STpush(&st, begin);STpush(&st, keyi - 1);}}STDestroy(&st);
}

快速排序的优化

优化角度从两个方面切入

  1. 在选择关键字的(基准值)时候,如果我们碰到了,有序数组,那么就会,减低排序效率。
    • 方法一:三数取中,即区三个关键字先进行排序,将中间数作为关键字,一般取左端右端和中间值。
    • 方法二:随机值。利用随机数生成。

三数取中代码实现

int GetmidNum(int* a, int begin, int end)
{int mid = (begin + end) / 2;if (a[begin] < a[mid]){if (a[mid] < a[end]){return mid;}else if(a[end]<a[begin]){return begin;}else{return end;}}else //a[begin]>a[mid]{if (a[begin] < a[end]){return begin;}else if (a[end] < a[mid]){return mid;}else{return end;}}

随机选 key(下标) 代码实现

srand(time(0));
int randi = left + (rand() % (right - left));
Swap(&a[left], &a[randi]);

快速排序复杂度分析

  • 在平均情况下,快速排序的时间复杂度为O(n log n),这是因为每次划分都能够将数组分成大致相等的两部分,从而实现高效排序。在最坏情况下,快速排序的时间复杂度为O(n^2)
  • 除了递归调用的栈空间之外,不需要额外的存储空间,因此空间复杂度是O(log n)。在最坏情况下,快速排序的时间复杂度可能是 O(n),这是因为在最坏情况下,递归堆栈空间可能会增长到线性级别。

根据上述描述,优化快速排序是必要的。

归并排序(Merge Sort)

在这里插入图片描述

归并排序的概念

归并排序(Merge Sort)是一种基于分治策略的排序算法,它将待排序的序列分为两个或以上的子序列,对这些子序列分别进行排序,然后再将它们合并为一个有序的序列。归并排序的基本思想是将待排序的序列看作是一系列长度为1的有序序列,然后将相邻的有序序列段两两归并,形成长度为2的有序序列,以此类推,最终得到一个长度为n的有序序列。

基本操作:

  • 分解:将序列每次折半划分,递归实现,直到子序列的大小为1。
  • 合并:将划分后的序列段两两合并后排序。在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。这两个有序序列段分别为 R[low, mid]R[mid+1, high]。先将他们合并到一个局部的暂存数组 R2 中,合并完成后再将 R2 复制回 R 中。

代码实现(递归)

void _MergeSort(int* a, int* tmp, int begin, int end)
{if (begin >= end)return;int mid = (begin + end) / 2;_MergeSort(a, tmp, begin, mid - 1);_MergeSort(a, tmp, mid + 1, end);int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] > a[begin2]){tmp[i++] = a[begin2++];}else{tmp[i++] = a[begin1++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));}void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}_MergeSort(a, tmp, 0, n-1);free(tmp);
}

代码实现(迭代)

void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}int gap = 1;while (gap < n){for (int i = 0; i < n; i =2* gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;if (end1 >= n || begin2 >= n){break;}if (end2 >= n){end2 = n-1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));}gap *= 2;}free(tmp); 
}

归并排序复杂度分析

  • 时间复杂度是 O(n log n),其中 n 是待排序元素的数量。这个时间复杂度表明,归并排序的执行速度随着输入大小的增加而线性增加,但不会超过对数级的增长。
  • 空间复杂度为 O(n),在数据拷贝的时候malloc一个等大的数组。

总结

p[j++] = a[begin2++];
}
}

		while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));}gap *= 2;
}
free(tmp); 

}


## 归并排序复杂度分析* 时间复杂度是 O(n log n),其中 n 是待排序元素的数量。这个时间复杂度表明,归并排序的执行速度随着输入大小的增加而线性增加,但不会超过对数级的增长。
* 空间复杂度为 O(n),在数据拷贝的时候malloc一个等大的数组。# 总结![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/8d8d45e2fc8b4b0fa4747b27d20cd50c.png)

相关文章:

排序(堆排序、快速排序、归并排序)-->深度剖析(二)

前言 前面介绍了冒泡排序、选择排序、插入排序、希尔排序&#xff0c;作为排序中经常用到了算法&#xff0c;还有堆排序、快速排序、归并排序 堆排序&#xff08;HeaSort&#xff09; 堆排序的概念 堆排序是一种有效的排序算法&#xff0c;它利用了完全二叉树的特性。在C语言…...

七一建党节|热烈庆祝中国共产党成立103周年!

时光荏苒&#xff0c;岁月如梭。 在这热情似火的夏日&#xff0c; 我们迎来了中国共产党成立103周年的重要时刻。 这是一个值得全体中华儿女共同铭记和庆祝的日子&#xff0c; 也是激励我们不断前进的重要时刻。 103年&#xff0c; 风雨兼程&#xff0c;砥砺前行。 从嘉兴…...

Spring Boot应用知识梳理

一.简介 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的工具。它简化了基于 Spring 的应用程序的配置和部署过程&#xff0c;提供了一种快速、便捷的方式来构建独立的、生产级别的 Spring 应用程序。 Spring Boot 的一些主要优点包括&#xff1a; 1. 简化配置…...

Spring中利用重载与静态分派

Spring中利用重载与静态分派 在Java和Spring框架中&#xff0c;重载&#xff08;Overloading&#xff09;和静态分派&#xff08;Static Dispatch&#xff09;是两个非常重要的概念&#xff0c;它们在处理类方法选择和执行过程中扮演着关键角色。本文旨在深入探讨Spring环境下…...

文本三剑客之awk:

文本三剑客awk&#xff1a; grep 查 sed 增删改查 主要&#xff1a;增改 awk 按行取列 awk awk默认的分隔符&#xff1a;空格&#xff0c;tab键&#xff0c;多个空格自动压缩为一个。 awk的工作原理&#xff1a;根据指令信息&#xff0c;逐行的读取文本内容&#xff0c;然…...

SpringSecurity-授权示例

用户基于权限进行授权 定义用户与权限 authorities()。 package com.cms.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.security.core.userdetails.User; import…...

选哪个短剧系统源码好:全面评估与决策指南

在短剧内容创作和分享日益流行的今天&#xff0c;选择合适的短剧系统源码对于构建一个成功的短剧平台至关重要。短剧系统源码不仅关系到平台的稳定性和用户体验&#xff0c;还直接影响到内容创作者和观众的互动质量。本文将提供一份全面的评估指南&#xff0c;帮助您在众多短剧…...

AI时代的软件工程:挑战与改变

人工智能&#xff08;AI&#xff09;正以惊人的速度改变着我们的生活和工作方式。作为与AI关系最为密切的领域之一&#xff0c;软件工程正经历着深刻的转变。 1 软件工程的演变 软件工程的起源 软件工程&#xff08;Software Engineering&#xff09;是关于如何系统化、规范化地…...

Zuul介绍

Zuul 是 Netflix 开源的一个云平台网络层代理&#xff0c;它主要用于路由、负载均衡、中间件通信和动态路由。Zuul 本质上是一个基于 JVM 的网关&#xff0c;它提供了以下功能&#xff1a; 1.路由&#xff1a;Zuul 允许客户端和服务器之间的所有入站和出站请求通过一个中心化的…...

7-1作业

1.实验目的&#xff1a;完成字符收发 led.h #ifndef __GPIO_H__ #define __GPIO_H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h"//RCC,GPIO,UART初始化 void init();//字符数据发送 void set_tt…...

ElasticSearch安装、配置详细步骤

一、环境及版本介绍 操作系统&#xff1a; Windows 10 软件版本&#xff1a; elasticsearch-7.17.22、kibana-7.17.22、IK-7.17.22 开发环境选择软件版本应提前考虑正式系统环境&#xff0c;否则会产生软件与服务器环境不兼容的问题出现&#xff0c;ElasticSearch与环境支持…...

【Mybatis 与 Spring】事务相关汇总

之前分享的几篇文章可以一起看&#xff0c;形成一个体系 【Mybatis】一级缓存与二级缓存源码分析与自定义二级缓存 【Spring】Spring事务相关源码分析 【Mybatis】Mybatis数据源与事务源码分析 Spring与Mybaitis融合 SpringManagedTransaction&#xff1a; org.mybatis.spri…...

Leetcode 2065. 最大化一张图中的路径价值(DFS / 最短路)

Leetcode 2065. 最大化一张图中的路径价值 暴力DFS 容易想到&#xff0c;从0点出发DFS&#xff0c;期间维护已经走过的距离&#xff08;时间&#xff09;和途径点的权值之和&#xff0c;若访问到0点则更新答案&#xff0c;若下一步的距离与已走过的距离和超出了maxTime&#…...

SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

CVPR2024 香港理工大学&OPPO&bytedancehttps://github.com/cswry/SeeSR?tabreadme-ov-file#-licensehttps://arxiv.org/pdf/2311.16518#page5.80 问题引入 因为有些LR退化情况比较严重&#xff0c;所以超分之后的结果会出现语义的不一致的情况&#xff0c;所以本文训…...

七月论文审稿GPT第5版:拿我司七月的早期paper-7方面review数据集微调LLama 3

前言 llama 3出来后&#xff0c;为了通过paper-review的数据集微调3&#xff0c;有以下各种方式 不用任何框架 工具 技术&#xff0c;直接微调原生的llama 3&#xff0c;毕竟也有8k长度了 效果不期望有多高&#xff0c;纯作为baseline通过PI&#xff0c;把llama 3的8K长度扩展…...

盘古5.0,靠什么去解最难的题?

文&#xff5c;周效敬 编&#xff5c;王一粟 当大模型的竞争开始拼落地&#xff0c;商业化在B端和C端都展开了自由生长。 在B端&#xff0c;借助云计算向千行万业扎根&#xff1b;在C端&#xff0c;通过软件App和智能终端快速迭代。 在华为&#xff0c;这家曾经以通信行业起…...

2.3章节Python中的数值类型

1.整型数值 2.浮点型数值 3.复数   Python中的数值类型清晰且丰富&#xff0c;主要分为以下几种类型&#xff0c;每种类型都有其特定的用途和特性。 一、整型数值 1.定义&#xff1a;整数类型用于表示整数值&#xff0c;如1、-5、100等。 2.特点&#xff1a; Python 3中的…...

每日Attention学习7——Frequency-Perception Module

模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息&#xff0c;更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...

【从0实现React18】 (五) 初探react mount流程 完成核心递归流程

更新流程的目的&#xff1a; 生成wip fiberNode树标记副作用flags 更新流程的步骤&#xff1a; 递&#xff1a;beginWork归&#xff1a;completeWork 在 上一节 &#xff0c;我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中&#xff…...

0-30 VDC 稳压电源,电流控制 0.002-3 A

怎么运行的 首先&#xff0c;有一个次级绕组额定值为 24 V/3 A 的降压电源变压器&#xff0c;连接在电路输入点的引脚 1 和 2 上。&#xff08;电源输出的质量将直接影响与变压器的质量成正比&#xff09;。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...