软考-软件设计师
软考
软考科目
软考分为初级、中级、高级,初级含金量相对不够,高级考试有难度,所以大多数人都在考中级,中级也分很多科目,我考的是软件设计师(已经通过)。
合格标准
考试分为上午题和下午题,各75分,45分及格,同一场考试上午下午都及格就算通过了。如果只有一门考过,成绩不会保留到下一次考试,也就是说下次考试还是要两门都通过才算合格。
具体题型
-
上午题目:75道选择题,一题一分,有简单有难都是一题一分,不要过多纠结难题。
选择题知识点包括:数据结构与算法,计算机组成原理,操作系统,计算机网络,数据库,软件工程,面向对象技术,设计模式,编译原理,结构化开发,信息安全,知识产权和专业英语。 -
下午题目:75分,六道大题,每题15分,1-4必答,5、6选一道答题。也是有易有难,建议按下面顺序答题。
| 考试题号 | 考试内容 | 考察形式 | 备注 |
|---|---|---|---|
| 1 | 结构化开发方法:DFD数据流图 | 一般能拿10+分 | |
| 2 | 数据库:E-R图 | 一般能拿10+分 | |
| 3 | 软件工程:UML图 | 一般考类图+用例图,有时也考类图+其他图 | 一般能拿10+分 |
| 5 / 6 | 5(C++)/ 6(Java)23种设计模式 | 代码填空 | 一般5个空,一空3分,一般能拿9-12分 |
| 4 | C语言:算法设计与分析 | 难度飘忽不定,一般4个代码填空,每个2分,策略 + 时间空间复杂度 + 给实例求结果 = 7分 |
祝愿所有考生都能一次通过!!!
祝愿所有考生都能一次通过!!!
祝愿所有考生都能一次通过!!!
相关文章:
软考-软件设计师
软考 软考科目 软考分为初级、中级、高级,初级含金量相对不够,高级考试有难度,所以大多数人都在考中级,中级也分很多科目,我考的是软件设计师(已经通过)。 合格标准 考试分为上午题和下午题…...
UOS系统中JavaFx笔锋功能
关于笔锋功能,网上找了很久,包括Java平台客户端,Android端,相关代码资料比较少,找了很多经过测试效果都差强人意,自己也搓不出来,在UOS平台上JavaFX也获取不到压力值,只能用速度的变…...
后端加前端Echarts画图示例全流程(折线图,饼图,柱状图)
本文将带领读者通过一个完整的Echarts画图示例项目,演示如何结合后端技术(使用Spring Boot框架)和前端技术(使用Vue.js或React框架)来实现数据可视化。我们将实现折线图、饼图和柱状图三种常见的数据展示方式ÿ…...
ValidateAntiForgeryToken、AntiForgeryToken 防止CSRF(跨网站请求伪造)
用途:防止CSRF(跨网站请求伪造)。 用法:在View->Form表单中: aspx:<%:Html.AntiForgeryToken()%> razor:Html.AntiForgeryToken() 在Controller->Action动作上:[ValidateAntiForge…...
《昇思25天学习打卡营第5天 | mindspore 网络构建 Cell 常见用法》
1. 背景: 使用 mindspore 学习神经网络,打卡第五天; 2. 训练的内容: 使用 mindspore 的 nn.Cell 构建常见的网络使用方法; 3. 常见的用法小节: 支持一系列常用的 nn 的操作 3.1 nn.Cell 网络构建&…...
SQLServer:从数据类型 varchar 转换为 numeric 时出错。
1.工作要求 计算某两个经纬度距离 2.遇到问题 从数据类型 varchar 转换为 numeric 时出错。 3.解决问题 项目版本较老,使用SQLServer 2012 计算距离需执行视图,如下: SET QUOTED_IDENTIFIER ON SET ANSI_NULLS ON GO ALTER view vi_ord…...
探索迁移学习:通过实例深入理解机器学习的强大方法
探索迁移学习:通过实例深入理解机器学习的强大方法 🍁1. 迁移学习的概念🍁2. 迁移学习的应用领域🍁2.1 计算机视觉🍁2.2 自然语言处理(NLP)🍁2.3 医学图像分析🍁2.4 语音…...
【Linux】性能分析器 perf 详解(四):trace
上一篇:【Linux】性能分析器 perf 详解(三) 1、trace 1.1 简介 perf trace 类似于 strace 工具:用于对Linux系统性能分析和调试的工具。 原理是:基于 Linux 性能计数器(Performance Counters for Linux, PCL),监控和记录系统调用和其他系统事件。 可以提供关于硬件…...
信息安全体系架构设计
对信息系统的安全需求是任何单一安全技术都无法解决的,要设计一个信息安全体系架构,应当选择合适的安全体系结构模型。信息系统安全设计重点考虑两个方面;其一是系统安全保障体系;其二是信息安全体系架构。 1.系统安全保障体系 安…...
GPT-5即将登场:AI赋能下的未来工作与日常生活新图景
随着OpenAI首席技术官米拉穆拉蒂在近期采访中的明确表态,GPT-5的发布已不再是遥不可及的梦想,而是即将在一年半后与我们见面的现实。这一消息无疑在科技界乃至全社会引发了广泛关注和热烈讨论。从GPT-4到GPT-5的飞跃,被形容为从高中生到博士生…...
RocketMQ实战:一键在docker中搭建rocketmq和doshboard环境
在本篇博客中,我们将详细介绍如何在 Docker 环境中一键部署 RocketMQ 和其 Dashboard。这个过程基于一个预配置的 Docker Compose 文件,使得部署变得简单高效。 项目介绍 该项目提供了一套 Docker Compose 配置,用于快速部署 RocketMQ 及其…...
前端项目vue3/React使用pako库解压缩后端返回gzip数据
pako仓库地址:https://github.com/nodeca/pako 文档地址:pako 2.1.0 API documentation 外部接口返回一个直播消息或者图片数据是经过zip压缩的,前端需要把这个数据解压缩之后才可以使用,这样可以大大降低网络数据传输的内容&…...
C++专业面试真题(1)学习
TCP和UDP区别 TCP 面向连接。在传输数据之前,通信双方需要先建立一个连接(三次握手)。可靠性。TCP提供可靠的数据传输,它通过序列号、确认应答、重传机制和校验和等技术确保数据的正确传输。数据顺序:TCP保证数据按发…...
2024 年人工智能和数据科学的五个主要趋势
引言 2023年,人工智能和数据科学登上了新闻头条。生成性人工智能的兴起无疑是这一显著提升曝光度的驱动力。那么,在2024年,该领域将如何继续占据头条,并且这些趋势又将如何影响企业的发展呢? 在过去几个月,…...
GPU云渲染平台到底怎么选?这六点要注意!
随着对高效计算和图像处理需求的增加,GPU云渲染平台成为许多行业的关键工具。尤其是对影视动画制作领域来说,选择一个合适的GPU云渲染平台可以大大提升工作效率。然而,面对市场上众多的选择,如何找到适合自己的GPU云渲染平台呢&am…...
【区块链+基础设施】国家健康医疗大数据科创平台 | FISCO BCOS应用案例
在医疗领域,疾病数据合法合规共享是亟待解决的难题。一方面,当一家医院对患者实施治疗后,若患者转到其 他医院就医,该医院就无法判断诊疗手段是否有效。另一方面,医疗数据属于个人敏感数据,一旦被泄露或被恶…...
redis压测和造数据方式
一、redis 压测工具 1、压测命令 1、对3000字节的数据进行get set的操作 redis-benchmark -h 10.166.15.36 -p 7001 -t set,get -n 100000 -q -d 3000 2、100个并发连接,100000个请求,检测host为localhost 端口为6379的redis服务器性能 redis-benchma…...
数据存储方案选择:ES、HBase、Redis、MySQL与MongoDB的应用场景分析
一、概述 1.1 背景 在当今数据驱动的时代,选择合适的数据存储技术对于构建高效、可靠的信息系统至关重要。随着数据量的爆炸式增长和处理需求的多样化,市场上涌现出了各种数据存储解决方案,每种技术都有其独特的优势和适用场景。Elasticsear…...
数组理论基础
1. **数组定义**: - 数组是存放在连续内存空间上的相同类型数据的集合。 2. **数组特性**: - 数组下标从0开始。 - 数组的内存空间地址是连续的。 3. **数组操作**: - 数组可以通过下标索引快速访问元素。 - 数组元素的删除…...
FlinkCDC 数据同步优化及常见问题排查
【面试系列】Swift 高频面试题及详细解答 欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: 欢迎关注微信公众号:野老杂谈 ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
