网站开发 加二维扫码/短网址生成网站
Deep-Learning-Interview-Book/docs/深度学习.md at master · amusi/Deep-Learning-Interview-Book · GitHub
网上相关总结:
小菜鸡写一写基础深度学习的问题(复制大佬的,自己复习用) - 知乎 (zhihu.com)
CV面试问题准备持续更新贴 - 知乎 (zhihu.com)
Epoch
- Epoch 是指完成一次完整的数据集训练的过程。
- 比如,有一个数据集有1000个样本,当网络用这些样本训练一次后,这就是一个epoch。
Iteration
- Iteration 是指在一个epoch中,使用一个batch进行训练的次数。
- 如果你的数据集有1000个样本,batch size是100,那么一个epoch就会有10次iteration(1000/100=10)。
Batch Size
- Batch Size 是指每次iteration中用于训练的样本数量。
- 如果你的batch size是100,每次训练就使用100个样本。
反向传播(BP)推导
假设我们有一个简单的三层神经网络(输入层、隐藏层和输出层):
- 输入层: xxx
- 隐藏层: hhh
- 输出层: yyy
前向传播
-
输入到隐藏层: h=f(Wxhx+bh)h = f(W_{xh} x + b_h)h=f(Wxhx+bh) 其中 WxhW_{xh}Wxh 是输入到隐藏层的权重矩阵,bhb_hbh 是隐藏层的偏置向量,fff 是激活函数。
-
隐藏层到输出层: y^=g(Whyh+by)\hat{y} = g(W_{hy} h + b_y)y^=g(Whyh+by) 其中 WhyW_{hy}Why 是隐藏层到输出层的权重矩阵,byb_yby 是输出层的偏置向量,ggg 是输出层的激活函数,通常在分类问题中是softmax函数。
损失函数
假设我们使用均方误差损失函数:
其中 yyy 是实际输出,y^\hat{y}y^ 是预测输出。
反向传播
我们需要计算损失 LLL 对每个权重和偏置的梯度,然后更新这些参数。我们从输出层开始,逐层向后推导。
-
输出层梯度:
-
隐藏层到输出层权重梯度:
-
隐藏层到输出层偏置梯度:
-
隐藏层误差:
-
输入层到隐藏层权重梯度:
-
输入层到隐藏层偏置梯度:
参数更新
使用梯度下降法更新权重和偏置:
其中 η 是学习率。
深度神经网络(DNN)反向传播算法(BP) - 刘建平Pinard - 博客园 (cnblogs.com)
感受野计算
如何计算感受野(Receptive Field)——原理 - 知乎 (zhihu.com)
池化
1. 池化的作用
池化的主要作用有两个:
- 降低计算复杂度:通过减少特征图的尺寸,减少后续卷积层和全连接层的计算量。
- 减小过拟合:通过降低特征图的分辨率,可以使模型更具鲁棒性,对输入数据的小变化不那么敏感。
2. 池化类型
池化操作通常有两种类型:
- 最大池化(Max Pooling):从池化窗口中选择最大值。
- 平均池化(Average Pooling):从池化窗口中选择平均值。
池化(Pooling)的种类与具体用法——基于Pytorch-CSDN博客
一图读懂-神经网络14种池化Pooling原理和可视化(MAX,AVE,SUM,MIX,SOFT,ROI,CROW,RMAC )_图池化-CSDN博客
卷积神经网络(CNN)反向传播算法 - 刘建平Pinard - 博客园 (cnblogs.com)
Sobel边缘检测
是图像处理中常用的技术,它使用卷积核(滤波器)来突出图像中的边缘。Sobel算子通过计算图像灰度值的梯度来检测边缘。
1. Sobel算子
Sobel算子有两个卷积核,一个用于检测水平方向的边缘,另一个用于检测垂直方向的边缘。
水平Sobel卷积核(Gx)
diff
复制代码
-1 0 1 -2 0 2 -1 0 1
垂直Sobel卷积核(Gy)
diff
复制代码
-1 -2 -1 0 0 0 1 2 1
2. Sobel卷积操作
通过将这两个卷积核分别与图像进行卷积操作,可以得到图像在水平方向和垂直方向上的梯度图。
卷积计算过程
假设有一个3x3的图像块:
css
复制代码
a b c d e f g h i
水平方向的梯度计算(Gx):
css
复制代码
Gx = (c + 2f + i) - (a + 2d + g)
垂直方向的梯度计算(Gy):
css
复制代码
Gy = (g + 2h + i) - (a + 2b + c)
3. 组合梯度
最终的梯度强度可以通过组合Gx和Gy计算得到:
scss
复制代码
G = sqrt(Gx^2 + Gy^2)
梯度计算
通过这些卷积核,我们可以计算图像在水平方向和垂直方向的梯度。梯度表示图像灰度值的变化速率,变化速率大的地方就是边缘。具体来说:
- 水平方向梯度(Gx):表示图像从左到右的变化。如果有明显的水平边缘,Gx会有大的值。
- 垂直方向梯度(Gy):表示图像从上到下的变化。如果有明显的垂直边缘,Gy会有大的值。
4. 组合梯度
最终,通过组合水平方向和垂直方向的梯度(通常使用欧几里得距离),我们可以得到图像的梯度强度:
计算力(flops)和参数(parameters)数量
(31 封私信 / 80 条消息) CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? - 知乎 (zhihu.com)
参数共享的卷积环节
不可导的激活函数如何处理
BN
BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结_四维layernormal-CSDN博客
Batch Normalization原理与实战 - 知乎 (zhihu.com)
Normalization操作我们虽然缓解了ICS问题,让每一层网络的输入数据分布都变得稳定,但却导致了数据表达能力的缺失。BN又引入了两个可学习(learnable)的参数 𝛾 与 𝛽 。这两个参数的引入是为了恢复数据本身的表达能力,对规范化后的数据进行线性变换
重点最后一句
感受野计算
卷积神经网络物体检测之感受野大小计算 - machineLearning - 博客园 (cnblogs.com)
卷积神经网络的感受野 - 知乎 (zhihu.com)
资源 | 从ReLU到Sinc,26种神经网络激活函数可视化 (qq.com)
非线性激活函数的线性区域
从 SGD 到 Adam —— 深度学习优化算法概览(一) - 知乎 (zhihu.com)
一个框架看懂优化算法之异同 SGD/AdaGrad/Adam - 知乎 (zhihu.com)
指数移动平均公式
EMA指数滑动平均(Exponential Moving Average)-CSDN博客
动量梯度下降法(Momentum)
Adagrad
RMSprop
Adam
Adam那么棒,为什么还对SGD念念不忘 (2)—— Adam的两宗罪 - 知乎 (zhihu.com)
dropout
深度学习-Dropout详解_深度学习dropout-CSDN博客
Dropout的深入理解(基础介绍、模型描述、原理深入、代码实现以及变种)-CSDN博客
一文看尽12种Dropout及其变体-腾讯云开发者社区-腾讯云 (tencent.com)
Pytorch——dropout的理解和使用 - Circle_Wang - 博客园 (cnblogs.com)
1x1卷积
(31 封私信 / 80 条消息) 卷积神经网络中用1*1 卷积有什么作用或者好处呢? - 知乎 (zhihu.com)
深度学习笔记(六):1x1卷积核的作用归纳和实例分析_1x1卷积降维-CSDN博客
AlexNet网络结构详解(含各层维度大小计算过程)与PyTorch实现-CSDN博客
深度学习——VGG16模型详解-CSDN博客
3乘3卷积代替5乘5卷积
经典卷积神经网络算法(4):GoogLeNet - 奥辰 - 博客园 (cnblogs.com)
1x1卷积降维再接3x3卷积
resnet
两种ResNet设计
channel不同怎么相加
通过卷积调整
ResNet解析-CSDN博客
(31 封私信 / 80 条消息) resnet(残差网络)的F(x)究竟长什么样子? - 知乎 (zhihu.com)
(31 封私信 / 80 条消息) Resnet到底在解决一个什么问题呢? - 知乎 (zhihu.com)
残差连接使梯度稳定
ResNet中的恒等映射是一种直接将输入添加到输出的操作方式,确保了信息和梯度可以稳定地传递。它通过保持梯度的稳定性,防止了梯度消失和爆炸问题,从而使得训练非常深的网络成为可能。
(31 封私信 / 80 条消息) ResNet为什么不用Dropout? - 知乎 (zhihu.com)
人工智能 - [ResNet系] 002 ResNet-v2 - G时区@深度学习 - SegmentFault 思否
DenseNet详解_densenet网络-CSDN博客
yolo系列
YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍 !!-CSDN博客
【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)_yolo论文-CSDN博客
YOLO系列算法精讲:从yolov1至yolov8的进阶之路(2万字超全整理)-CSDN博客
NMS
v2引入anchor
分割
计算机视觉—浅谈语义分割、实例分割及全景分割任务 (深度学习/图像处理/计算机视觉)_全景分割和实例分割-CSDN博客
【计算机视觉】最全语义分割模型总结(从FCN到deeplabv3+)-CSDN博客
目标检测与YOLO(2) + 语义分割(FCN)_yolo模型和fcn-CSDN博客
【yolov8系列】yolov8的目标检测、实例分割、关节点估计的原理解析-CSDN博客
yolo实现实例分割和关键点预测,都是在head部分增加新的检测头实现
Bounding-box regression详解(边框回归)_bbox regression-CSDN博客
反卷积(Deconvolution)、上采样(UNSampling)与上池化(UnPooling)_反卷积和上采样-CSDN博客
形象解释:
反卷积(Transposed conv deconv)实现原理(通俗易懂)-CSDN博客
对深度可分离卷积、分组卷积、扩张卷积、转置卷积(反卷积)的理解-CSDN博客
ShuffleNetV2:轻量级CNN网络中的桂冠 - 知乎 (zhihu.com)
轻量级神经网络“巡礼”(一)—— ShuffleNetV2 - 知乎 (zhihu.com)
(31 封私信 / 80 条消息) 怎么选取训练神经网络时的Batch size? - 知乎 (zhihu.com)
相关文章:

【work】AI八股-神经网络相关
Deep-Learning-Interview-Book/docs/深度学习.md at master amusi/Deep-Learning-Interview-Book GitHub 网上相关总结: 小菜鸡写一写基础深度学习的问题(复制大佬的,自己复习用) - 知乎 (zhihu.com) CV面试问题准备持续更新贴 …...

【LeetCode】12. 小张刷题计划
稳住,能赢!没有经验的同学在面试岗位的时候,总是显得手忙脚乱,所以多练习,把技能提升,眼界提升,接着心态放平和,不要慌张,把面试题目读懂读透彻就会大大提升赢的概率。 1…...

Tomcat部署以及优化
1、tomcat tomcat是用java代码的程序,运行的是java的web服务器 tomcat和php一样都是用来处理动态页面,tomcat也可以做为web应用服务器,开源的 php处理.php为结尾的 tomcat 处理.jsp nginx 处理 .html 2、tomcat的特点和功能 1、servle…...

ubuntu 22 安装 lua 环境 编译lua cjson 模块
在 windows 下使用 cygwin 编译 lua 和 cjson 简直就是灾难,最后还是到 ubuntu 下完成了。 1、下载lua源码(我下载的 5.1 版本,后面还有一个小插曲), 直接解压编译,遇到一个 readline.h not found 的问题,需要安装 re…...

地下城游戏中都有哪些类型的服务器?
地下城类型的服务器以其独特的魅力吸引了众多玩家。这些服务器通常基于流行的地下城探险游戏,如《Minecraft》的地下城模式或《Dungeon Fighter Online》等,提供了丰富多样的游戏体验。下面,我们将探讨几种不同类型的地下城服务器及其特点。 …...

大模型面试(二)
这次又接到一个大模型岗位的面试。但是从面试过程来看,现在大模型岗位都要求有相关工作经验,还是太难进了。还是说国内公司早就过了培养人的年代了? 问到了哪些知识点: 开源大模型:项目里用的是浦语大模型࿰…...

rsync远程同步--累了,明天继续再写~。
rsync官网链接 rsync(Remote Sync,远程同步)开源快速备份工具,是一个用于本地和远程文件同步的Unix-like命令行程序。它使用“快速数据传输算法”,只发送源和目标之间的差异,因此数据传输非常高效。 可以在不同主机之间镜像同步整 个目录树…...

每日刷题(二分查找,匈牙利算法,逆序对)
目录 1.Sarumans Army 2.Catch That Cow 3.Drying 4.P3386 【模板】二分图最大匹配 5. Swap Dilemma 1.Sarumans Army 3069 -- Sarumans Army (poj.org) 这道题就是要求我们在给的的位置放入 palantir,每个 palantir有R大小的射程范围,要求求出最少…...

LLM应用构建前的非结构化数据处理(三)文档表格的提取
1.学习内容 本节次学习内容来自于吴恩达老师的Preprocessing Unstructured Data for LLM Applications课程,因涉及到非结构化数据的相关处理,遂做学习整理。 本节主要学习pdf中的表格数据处理 2.环境准备 和之前一样,可以参考LLM应用构建前…...

如何从数码相机恢复已删除的照片
照片恢复是恢复已删除照片的最佳工具,它带有恢复 RAW 照片的选项。在本文中,我们将解释如何恢复已删除的照片。 不仅对于专业摄影师,对于像我们这样喜欢捕捉回忆的人来说,瞬间相机都是重要的数码设备。遗憾的是,就像智…...

设计模式使用场景实现示例及优缺点(创建型模式——单例模式、建造者模式、原型模式)
创建型模式 单例模式(Singleton Pattern) 单例模式(Singleton Pattern)在Java中的使用场景与在其他编程语言中类似,其主要目的是确保一个类只有一个实例,并提供一个全局的访问点。以下是单例模式的一些常…...

LAMP万字详解(概念、构建步骤)
目录 LAMP Apache 起源 主要特点 软件版本 编译安装httpd服务器 编译安装的优点 操作步骤 准备工作 编译 安装 优化执行路径 添加服务 守护进程 配置httpd 查看 Web 站点的访问情况 虚拟主机 类型 部署基于域名的虚拟主机 为虚拟主机提供域名解析ÿ…...

金南瓜科技SECS/GEM:引领智能制造新潮流
引言 在当今快速发展的半导体行业中,智能制造和自动化生产已成为提升效率和降低成本的关键。金南瓜科技凭借其先进的SECS/GEM解决方案,正成为这一变革的先锋。 SECS/GEM:智能制造的核心 SECS/GEM(SEMI Equipment Communications …...

昇思训练营打卡第二十一天(DCGAN生成漫画头像)
DCGAN,即深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network),是一种深度学习模型,由Ian Goodfellow等人在2014年提出。DCGAN在生成对抗网络(GAN)的基础上,引…...

东方通Tongweb发布vue前端
一、前端包中添加文件 1、解压vue打包文件 以dist.zip为例,解压之后得到dist文件夹,进入dist文件夹,新建WEB-INF文件夹,进入WEB-INF文件夹,新建web.xml文件, 打开web.xml文件,输入以下内容 …...

spring xml实现bean对象(仅供自己参考)
对于spring xml来实现bean 具体代码: <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaL…...

MiniGPT-Med 通用医学视觉大模型:生成医学报告 + 视觉问答 + 医学疾病识别
MiniGPT-Med 通用医学视觉大模型:生成医学报告 视觉问答 医学疾病识别 提出背景解法拆解 论文:https://arxiv.org/pdf/2407.04106 代码:https://github.com/Vision-CAIR/MiniGPT-Med 提出背景 近年来,人工智能(AI…...

如何判断ip地址在同一个网段:技术解析与实际应用
在网络世界中,IP地址就像每个人的身份证一样,是识别和定位网络设备的关键。然而,仅仅知道IP地址还不足以完全理解其背后的网络结构和通信方式。特别是当我们需要判断两个或多个IP地址是否位于同一网段时,就需要借助子网掩码这一概…...

linux高级编程(TCP)(传输控制协议)
TCP与UDP: TCP: TCP优点: 可靠,稳定 TCP的可靠体现在TCP在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统…...

【常见开源库的二次开发】一文学懂CJSON
简介: JSON(JavaScript Object Notation)是一种轻量级的数据交换格式。它基于JavaScript的一个子集,但是JSON是独立于语言的,这意味着尽管JSON是由JavaScript语法衍生出来的,它可以被任何编程语言读取和生成…...

点云下采样有损压缩
转自本人博客:点云下采样有损压缩 点云下采样是通过一定规则对原点云数据进行再采样,减少点云个数,降低点云稀疏程度,减小点云数据大小。 1. 体素下采样(Voxel Down Sample) std::shared_ptr<PointClo…...

AutoHotKey自动热键(六)转义符号
转义符号 符号说明,, (原义的逗号). 注意: 在命令最后一个参数中的逗号不需要转义, 因为程序知道把它们作为原义处理. 对于 MsgBox 所有参数同样如此, 因为它会智能的处理逗号.%% (原义的百分号) (原义的重音符; 即两个连续的转义符产生单个原义字符);; (原义的分号). 注意: 仅…...

第16章 主成分分析:四个案例及课后习题
1.假设 x x x为 m m m 维随机变量,其均值为 μ \mu μ,协方差矩阵为 Σ \Sigma Σ。 考虑由 m m m维随机变量 x x x到 m m m维随机变量 y y y的线性变换 y i α i T x ∑ k 1 m α k i x k , i 1 , 2 , ⋯ , m y _ { i } \alpha _ { i } ^ { T } …...

股票分析系统设计方案大纲与细节
股票分析系统设计方案大纲与细节 一、引言 随着互联网和金融行业的迅猛发展,股票市场已成为重要的投资渠道。投资者在追求财富增值的过程中,对股票市场的分析和预测需求日益增加。因此,设计并实现一套高效、精准的股票分析系统显得尤为重要。本设计方案旨在提出一个基于大…...

.gitmodules文件
.gitmodules文件在Git仓库中的作用 .gitmodules 文件是 Git 版本控制系统中用来跟踪和管理子模块的配置文件。子模块允许你将一个 Git 仓库嵌套在另一个仓库中,这样可以方便地管理多个项目之间的依赖关系。 在 .gitmodules 文件中,通常会记录每个子模块…...

STM32 SPI世界:W25Q64 Flash存储器的硬件与软件集成策略
摘要 在嵌入式系统设计中,选择合适的存储解决方案对于确保数据的安全性和系统的可靠性至关重要。W25Q64 Flash存储器因其高性能和大容量成为STM32微控制器项目中的热门选择。本文将深入探讨STM32与W25Q64 Flash存储器的硬件连接、软件集成以及SPI通信的最佳实践。 …...

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验17 开放最短路径优先OSPF
一、实验目的 1.验证OSPF协议的作用; 二、实验要求 1.使用Cisco Packet Tracer仿真平台; 2.观看B站湖科大教书匠仿真实验视频,完成对应实验。 三、实验内容 1.构建网络拓扑; 2.验证OSPF协议的作用。 四、实验步骤 1.构建网…...

ChatGPT对话:python程序模拟操作网页弹出对话框
【编者按】单击一网页中的按钮,弹出对话框网页,再单击其中的“Yes”按钮,对话框关闭,请求并获取新网页。 可能ChatGPT第一次没有正确理解描述问题的含义,再次说明后,程序编写就正确了。 1问:pyt…...

利用亚马逊云科技云原生Serverless代码托管服务开发OpenAI ChatGPT-4o应用
今天小李哥继续介绍国际上主流云计算平台亚马逊云科技AWS上的热门生成式AI应用开发架构。上次小李哥分享了利用谷歌云serverless代码托管服务Cloud Functions构建Gemini Pro API,这次我将介绍如何利用亚马逊的云原生服务Lambda调用OpenAI的最新模型ChatGPT 4o。…...

Selenium 切换 frame/iframe
环境: Python 3.8 selenium3.141.0 urllib31.26.19说明: driver.switch_to.frame() # 将当前定位的主体切换为frame/iframe表单的内嵌页面中 driver.switch_to.default_content() # 跳回最外层的页面# 判断元素是否在 frame/ifame 中 # 126 邮箱为例 # …...